【題目】如圖,是☉O的直徑,點在☉O上,過點C的切線與AB的延長線交于點P,連接AC,過點OODAC交☉O于點D,連接CD.若∠A=30°,PC=6,CD的長為   

A. B. C. 3D.

【答案】D

【解析】

連接OC,在RtPOC中,根據(jù)∠P=30°,PC=6,求出OC,進而得出DCO是等邊三角形后解答即可.

解:連接OC

OA=OC,∠A=30°,
∴∠OCA=A=30°,
∴∠COB=A+ACO=60°,
PC是⊙O切線,
∴∠PCO=90°,∠P=30°,
PC=6
OC=PCtan30°=2
ODAC,
∴∠AOD=60°,
∵∠COB=60°
∴∠DOC=60°
OD=OC
∴△DOC是等邊三角形,
CD=OC=2,
故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=(x>0)的圖象交于A(2,﹣1)、B(,n)兩點.直線y=2y軸交于點C.

1)求一次函數(shù)與反比例函數(shù)的解析式;

2)求ABC的面積;

3)直接寫出不等式kx+b>在如圖所示范圍內(nèi)的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD,點O是邊BC的中點,連接DO并延長,交AB的延長線于點E,連接BDEC

1)求證:四邊形BECD是平行四邊形;

2)若∠BOD100°,則當∠A   時,四邊形BECD是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AB是直徑,過點OODCB,垂足為點D,延長DO交⊙O于點E,過點EPEAB,垂足為點P,作射線DPCA的延長線于F點,連接EF,

1)求證:ODOP;(2)求證:FE是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在O中,AB是直徑,AD是弦,ADE = 60°,C = 30°

判斷直線CD是否是O的切線,并說明理由;

CD = ,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為矩形上一點,連接,將沿翻折得到,過點FGBC于點G,若AB=4,FG=1,則AE的長度為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果關(guān)于x的一元二次方程ax2+bx+c02個實數(shù)根,且其中一個實數(shù)根是另一個實數(shù)根的3倍,則稱該方程為立根方程

1)方程x24x+30  立根方程,方程x22x30  立根方程;(請?zhí)?/span>不是

2)請證明:當點(mn)在反比例函數(shù)y上時,關(guān)于x的一元二次方程mx2+4x+n0是立根方程;

3)若方程ax2+bx+c0是立根方程,且兩點P3,2)、Q6,2)均在二次函數(shù)yax2+bx+c上,求方程ax2+bx+c0的兩個根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】校園空地上有一面墻,長度為20m,用長為32m的籬笆和這面墻圍成一個矩形花圃,如圖所示.

(1)能圍成面積是126m2的矩形花圃嗎?若能,請舉例說明;若不能,請說明理由.

(2)若籬笆再增加4m,圍成的矩形花圃面積能達到170m2嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)與一次函數(shù)ykx+bk≠0)交于點A(﹣1,6)、Bn2).

1)求反比例函數(shù)與一次函數(shù)的表達式;

2)若點A關(guān)于y軸的對稱點為A,連接AABA,求AAB的面積.

查看答案和解析>>

同步練習(xí)冊答案