【題目】如圖,AD是△ABC的角平分線,DE,DF分別是△ABD和△ACD的高.得到下面四個結論:①OA=OD;ADEF;③當∠A=90°時,四邊形AEDF是正方形;④ AE2+DF2=AF2+DE2.上述結論中正確的是( )

A. ②③ B. ②④ C. ①②③ D. ②③④

【答案】D

【解析】

AD是角平分線及DE、DF均為高可知△AED≌△AFD,則可得AE=AF,DE=DF,繼而得到ADEF的垂直平分線,由此可判斷正誤,再由勾股定理可判斷的正誤,而的結論無法由已知條件推出.

解:∵AD是角平分線,

∴∠EAD=∠FAD,

∵∠AED=∠AFD=90°,AD=AD,

∴△ADE≌△AFD,

∴AE=AF,DE=DF,

∴AD⊥EF,②正確,

∵∠BAC=90°,∠AED=∠AFD=90°

又∵AE=AF,

∴四邊形AEDF是正方形,③正確,

∵∠AED=∠AFD=90°,

∴AE2+DE2=AF2+DF2=AD2

∵DE=DF,

∴AE2+DF2=AF2+DE2,④正確.

根據(jù)前述已得結論,需要四邊形AEDF是菱形才能得到OA=OD的結論,而題干并未給出這個條件,錯誤,

故選擇D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,∠B=30°,CDCM分別是斜邊上的高和中線,那么下列結論中錯誤的是(

A.CM=ACB.ACM=DCBC.AD=DMD.DB=4AD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系上有個點,點1次向上跳動1個單位至點,緊接著第2次向右跳動2個單位至點,第3次向上跳動1個單位,第4次向左跳動3個單位,第5次又向上跳動1個單位,第6次向右跳動4個單位,,依次規(guī)律跳動下去,點2019次跳動至點的坐標是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在等腰直角△ABC中,∠BAC=90°,AB=AC=2,點EBC邊上一點,∠DEF=45°且角的兩邊分別與邊AB,射線CA交于點P,Q.

(1)如圖2,若點EBC中點,將∠DEF繞著點E逆時針旋轉,DE與邊AB交于點P,EFCA的延長線交于點Q.設BPx,CQy,試求yx的函數(shù)關系式,并寫出自變量x的取值范圍;

(2)如圖3,點E在邊BC上沿BC的方向運動(不與B,C重合),且DE始終經過點A,EF與邊AC交于Q點.探究:在∠DEF運動過程中,△AEQ能否構成等腰三角形,若能,求出BE的長;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】本題10分在長方形ABCD中,AB=5cmBC=6cm,點P從點A開始沿邊AB向終點B1cm/s的速度移動,與此同時,點Q從點C開始沿邊CB向終點B以2cm/s的速度移動,如果P、Q分別從A、C同時出發(fā),當點Q運動到點B時,兩點停止運動.設運動時間為t秒.

1填空:BQ=______________cm,PB=_______________cm用含t的代數(shù)式表示;

2t為何值時,PQ的長度等于cm?

3是否存在t的值,使得五邊形APQCD的面積等于27?若存在,請求出此時t的值;若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知菱形的一個角與三角形的一個角重合,然后它的對角頂點在這個重合角的對邊上,這個菱形稱為這個三角形的親密菱形,如圖,在△CFE中,CF=6,CE=12,FCE=45°,以點C為圓心,以任意長為半徑作AD,再分別以點A和點D為圓心,大于AD長為半徑做弧,交EF于點B,ABCD.

(1)求證:四邊形ACDB為△CFE的親密菱形;

(2)求四邊形ACDB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列圖形中有大小不同的平行四邊形,第一幅圖中有1個平行四邊形,第二幅圖中有3個平行四邊形,第三幅圖中有5個平行四邊形,則第6幅和第7幅圖中合計有( )個平行四邊形

A.22B.24C.26D.28

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的兩個一元二次方程:

方程① ;

方程②:x2+(2k+1)x﹣2k﹣3=0.

(1)若方程①有兩個相等的實數(shù)根,求:k

(2)若方程①和②只有一個方程有實數(shù)根,請說明此時哪個方程沒有實數(shù)根.

(3)若方程①和②有一個公共根a,求代數(shù)式(a2+4a﹣2)k+3a2+5a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,ADBC,EF垂直平分AC,交AC于點F,交BC于點E,且BD=DE.

若∠BAE=40°,求∠C的度數(shù);

若△ABC周長13cm,AC=6cm,求DC長.

查看答案和解析>>

同步練習冊答案