Loading [MathJax]/jax/output/CommonHTML/jax.js
6.如圖,已知BC∥AD,BE∥AF.
(1)請說明∠A=∠B.
(2)若∠DOB=135°,求∠A的度數(shù).

分析 (1)由平行線的性質(zhì)(兩直線平行,同位角相等)可得∠A=∠B.
(2)由平行線的性質(zhì)(兩直線平行,同旁內(nèi)角互補)可得∠A=180°-∠DOE.

解答 解:(1)∵BC∥AD,
∴∠B=∠DOE,
又BE∥AF,
∴∠DOE=∠A,
∴∠A=∠B.
(2)∵∠DOB=∠EOA,由BE∥AF,得∠EOA+∠A=180°
又∠DOB=135°,
∴∠A=45°

點評 本題主要考查平行線的性質(zhì),掌握平行線的判定和性質(zhì)是解題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:解答題

16.如圖所示,在矩形ABCD中,E,F(xiàn)分別是邊AB,CD上的點,AE=CF,連接EF,BF,EF與對角線AC交于點O,且BE=BF,∠BEF=2∠BAC.
(1)求證:OE=OF;
(2)若AC=63,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

17.計算:
(1)(26-52)(-26-52
(2)(3+2-1)(3-2+1)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

14.先化簡,再求值:14(-4a2+2a-8)-(12a-1),其中a=12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

1.已知x1,x2是關(guān)于x的一元二次方程(a-1)x2+x+a2-1=0的兩個實數(shù)根,且x1+x2=13,求x1•x2的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

11.計算:
(1)16x3y3÷12x2y3•(-12xy3);
(2)(-ab)•(0.25a2b-12a3b2-16a4b3)÷(-0.5a2b);
(3)[(x2+y2)-(x-y)2+2y(x-y)]÷4y.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

18.若方程ax2+bx+c=0(a≠0)滿足9a-3b+c=0,則方程必有一根為-3.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

15.已知m,n是有理數(shù),方程x2+mx+n=0有一個根是5-2,則方程x2+mx+n=0的另一個根是-2-5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

16.如圖,△ABC中,D是AB的中點,DE⊥AB,∠ACE+∠BCE=180°,EF⊥AC交AC于F,AC=12,BC=8,則AF=10.

查看答案和解析>>

同步練習冊答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�