【題目】已知y是x的反比例函數(shù),且點(diǎn)A(3,5)在這個(gè)函數(shù)的圖象上.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)點(diǎn)B(-5,m)也在這個(gè)反比例函數(shù)的圖象上時(shí),求△AOB的面積.
【答案】(1)y=(2)4
【解析】
(1)設(shè)出反比例函數(shù)解析式,將點(diǎn)A(3,5)代入解析式即可求出k的值,從而得到函數(shù)解析式;
(2)將點(diǎn)B(-5,m)代入解析式,求出m的值得到B點(diǎn)坐標(biāo);求出直線AB的解析式,進(jìn)而求出直線AB與y軸的交點(diǎn),然后根據(jù)坐標(biāo)求出△AOB的面積.
(1)設(shè)反比例函數(shù)解析式為y=,
將點(diǎn)A(3,5)代入解析式得,k=3×5=15,y=.
(2)將點(diǎn)B(-5,m)代入y=得,m==-3,
則B點(diǎn)坐標(biāo)為(-5,-3),
設(shè)AB的解析式為y=kx+b,
將A(3,5),B(-5,-3)代入y=kx+b得,
,
解得,,
函數(shù)解析式為y=x+1,
D點(diǎn)坐標(biāo)為(0,1),
S△ABO=S△ADO+S△BDO=×1×3+=×1×5=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸相交于點(diǎn),與軸相交于點(diǎn).
(1)求點(diǎn),的坐標(biāo);
(2)求當(dāng)時(shí),的值,當(dāng)時(shí),的值;
(3)過點(diǎn)作直線與軸相交于點(diǎn),且使,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】美是一種感覺,本應(yīng)沒有什么客觀的標(biāo)準(zhǔn),但在自然界里,物體形狀的比例卻提供了在的稱與協(xié)調(diào)上的一種美感的參考,在數(shù)學(xué)上,這個(gè)比例稱為黃金分割.在人體由腳底至肚臍的長度與身高的比例上,肚臍是理想的黃金分割點(diǎn),也就是說,若此比值越接近就越給別人一種美的感覺. 某女士身高為,腳底至肚臍的長度與身高的比為為了追求美,地想利用高跟鞋達(dá)到這一效果 ,那么她選的高跟鞋的高度約為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在熱氣球A上看到正前方橫跨河流兩岸的大橋BC,并測得B,C兩點(diǎn)的俯角分別為53°和45°,已知大橋BC與地面在同一水平面上,其長度為75m,請求出熱氣球離地面的高度.(參考數(shù)據(jù):sin53°≈,cos53°≈,tan53°≈).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)E為AD上一點(diǎn),且AB=8,AE=3,BC=4,點(diǎn)P為AB上一動(dòng)點(diǎn),連接PC、PE,若PAE與PBC是相似三角形,則滿足條件的點(diǎn)P的個(gè)數(shù)有________個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場,為了吸引顧客,在“白色情人節(jié)”當(dāng)天舉辦了商品有獎(jiǎng)酬賓活動(dòng),凡購物滿200元者,有兩種獎(jiǎng)勵(lì)方案供選擇:一是直接獲得20元的禮金券,二是得到一次搖獎(jiǎng)的機(jī)會(huì).已知在搖獎(jiǎng)機(jī)內(nèi)裝有2個(gè)紅球和2個(gè)白球,除顏色外其它都相同,搖獎(jiǎng)?wù)弑仨殢膿u獎(jiǎng)機(jī)內(nèi)一次連續(xù)搖出兩個(gè)球,根據(jù)球的顏色(如表)決定送禮金券的多少.
球 | 兩紅 | 一紅一白 | 兩白 |
禮金券(元) | 18 | 24 | 18 |
(1)請你用列表法(或畫樹狀圖法)求一次連續(xù)搖出一紅一白兩球的概率.
(2)如果一名顧客當(dāng)天在本店購物滿200元,若只考慮獲得最多的禮品券,請你幫助分析選擇哪種方案較為實(shí)惠.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,∠1=∠2,則不一定能使△ABD≌△ACD的條件是 ( )
A. AB=AC B. BD=CD C. ∠B=∠C D. ∠BDA=∠CDA
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=BC,點(diǎn)D是線段AB上的一點(diǎn),連接CD,過點(diǎn)B作BG⊥CD,分別交CD,CA于點(diǎn)E,F,與過點(diǎn)A且垂直于AB的直線相交于點(diǎn)G,連接DF.給出以下四個(gè)結(jié)論:①②若點(diǎn)D是AB的中點(diǎn),則AF=AB;③當(dāng)B,C,F,D四點(diǎn)在同一個(gè)圓上時(shí),DF=DB;④若,則,其中正確的結(jié)論序號(hào)是( )
A. ①② B. ③④ C. ①②③ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,把圓形井蓋卡在角尺〔角的兩邊互相垂直,一邊有刻度)之間,即圓與兩條直角邊相切,現(xiàn)將角尺向右平移10cm,如圖2,OA邊與圓的兩個(gè)交點(diǎn)對應(yīng)CD的長為40cm則可知井蓋的直徑是( )
A. 25cm B. 30cm C. 50cm D. 60cm
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com