4.點(diǎn)(-1,y1),(1,y2),(4,y3)都在拋物線y=-x2+4x+m上,則y1,y2,y3的大小關(guān)系是(  )
A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y1<y3<y2

分析 先求出二次函數(shù)的對(duì)稱軸并確定出拋物線開口向下,然后根據(jù)點(diǎn)到對(duì)稱軸的距離的大小判斷即可.

解答 解:∵y=-x2+4x+m=-(x-2)2+4+m,
∴拋物線對(duì)稱軸為直線x=2,
∵a=-1<0,
∴拋物線開口向下,
且當(dāng)x<2時(shí),y隨x的增大而增大,
當(dāng)x>2時(shí),y隨x的增大而減小,
∵2-(-1)=3,
2-1=1,
4-2=2,
∴y1,y2,y3的大小關(guān)系是y1<y3<y2
故選D.

點(diǎn)評(píng) 本題考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,本題利用二次函數(shù)的對(duì)稱性以及增減性求解更簡(jiǎn)便.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

14.有理數(shù)a,b在數(shù)軸上的位置如圖,那么下列關(guān)系正確的是( 。
A.b>aB.-a>bC.|a|>|b|D.a>-b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

15.已知拋物線y=x2+bx+c的部分圖象如圖所示,若y<0,則x的取值范圍是( 。
A.-1<x<4B.x<-1或x>3C.x<-1或x>4D.-1<x<3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,在△ABC中,DE∥BC,DE分別與AB、AC相交于點(diǎn)D、E,若AD=2,DB=1,S△ADE=4,則S四邊形DBCE( 。
A.3B.5C.7D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在△ABC中,D、E分別是AB、AC上的點(diǎn),AE=4,AB=6,AD:AC=2:3,△ABC的角平分線AF交DE于點(diǎn)G,交BC于點(diǎn)F.
(1)請(qǐng)你直接寫出圖中所有的相似三角形;
(2)求AG與GF的比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.在平面直角坐標(biāo)系中,平行四邊形ABOC如圖放置,點(diǎn)A、C的坐標(biāo)分別是(0,4)、(-1,0),將此平行四邊形繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,得到平行四邊形A′B′OC′.
(1)如拋物線經(jīng)過點(diǎn)C、A、A′,求此拋物線的解析式;
(2)在(1)情況下,點(diǎn)M是第一象限內(nèi)拋物線上的一動(dòng)點(diǎn),問:當(dāng)點(diǎn)M在何處時(shí),△AMA′的面積最大?最大面積是多少?并求出此時(shí)M的坐標(biāo);
(3)在(1)的情況下,若P為拋物線上一動(dòng)點(diǎn),N為x軸上的一動(dòng)點(diǎn),點(diǎn)Q坐標(biāo)為(1,0),當(dāng)P、N、B、Q構(gòu)成以BQ作為一邊的平行四邊形時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,直線y=$\frac{1}{3}$x+1與x軸,y軸分別相交于點(diǎn)A,C兩點(diǎn),點(diǎn)B在x軸上,連結(jié)BC,若∠ACB=135°,則點(diǎn)B的坐標(biāo)為(  )
A.(1,0)B.($\sqrt{2}$,0)C.(2,0)D.($\sqrt{5}$,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

13.已知4輛板車和5輛卡車一次共運(yùn)31噸貨,10輛板車和3輛卡車一次能運(yùn)的貨相當(dāng),如果設(shè)每輛板車每次可運(yùn)x噸貨,每輛卡車每次運(yùn)y噸貨,則可列方程組(  )
A.$\left\{\begin{array}{l}{10x+5y=31}\\{4x=3y}\end{array}\right.$B.$\left\{\begin{array}{l}{4x+5y=31}\\{10x-3y=0}\end{array}\right.$
C.$\left\{\begin{array}{l}{4x=5y}\\{10x+3y=31}\end{array}\right.$D.$\left\{\begin{array}{l}{4x+31=5y}\\{10x=3y}\end{array}\right.$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

14.甲、乙兩個(gè)搬運(yùn)工搬運(yùn)某種貨物,已知乙比甲每小時(shí)多搬運(yùn)600kg,甲搬運(yùn)5000kg所用的時(shí)間與乙搬運(yùn)8000kg所用的時(shí)間相等,求甲、乙兩人每小時(shí)分別搬運(yùn)多少kg貨物.設(shè)甲每小時(shí)搬運(yùn)xkg貨物,則可列方程為(  )
A.$\frac{5000}{x-600}$=$\frac{8000}{x}$B.$\frac{5000}{x+600}$=$\frac{8000}{x}$C.$\frac{5000}{x}$=$\frac{8000}{x+600}$D.$\frac{5000}{x}$=$\frac{8000}{x-600}$

查看答案和解析>>

同步練習(xí)冊(cè)答案