【題目】已知矩形ABCD,AB=6,AD=8,將矩形ABCD繞點(diǎn)A順時針旋轉(zhuǎn)θ(0°<θ<360°)得到矩形AEFG,當(dāng)θ=_____°時,GC=GB.
【答案】60或300
【解析】
當(dāng)GB=GC時,點(diǎn)G在BC的垂直平分線上,分兩種情況討論,依據(jù)∠DAG=60°,即可得到旋轉(zhuǎn)角θ的度數(shù).
解:當(dāng)GB=GC時,點(diǎn)G在BC的垂直平分線上,
分兩種情況討論:
①當(dāng)點(diǎn)G在AD右側(cè)時,取BC的中點(diǎn)H,連接GH交AD于M,
∵GC=GB,
∴GH⊥BC,
∴四邊形ABHM是矩形,
∴AM=BH=AD=AG,
∴GM垂直平分AD,
∴GD=GA=DA,
∴△ADG是等邊三角形,
∴∠DAG=60°,
∴旋轉(zhuǎn)角θ=60°;
②當(dāng)點(diǎn)G在AD左側(cè)時,同理可得△ADG是等邊三角形,
∴∠DAG=60°,
∴旋轉(zhuǎn)角θ=360°﹣60°=300°.
故答案為60或300
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小亮從家出發(fā)步行到公交站臺后,等公交車去學(xué)校,如圖, 折線表示這個過程中行程 s (千米)與所花時間 t (分)之間的關(guān)系,下 列說法錯誤的是( )
A.他家到公交車站臺需行 1 千米B.他等公交車的時間為 4 分鐘
C.公交車的速度是 500 米/分D.他步行與乘公交車行駛的平均速度300米/分鐘
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸、軸分別交于,兩點(diǎn),是的中點(diǎn),是上一點(diǎn),四邊形是菱形,則的面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某汽車租憑公司要購買轎車和面包車共輛,其中轎車最少要購買輛,轎車每輛萬元,購頭面包車每輛萬元,公司可投入的購車資金不超過萬元.
(1)符合公司要求的購買方案有幾種?請說明理由;
(2)如果每輛轎車日租金為元,每輛面包車日租金為元,假設(shè)新購買的這輛汽車每日都可以全部租出,公司希望輛汽車的日租金最高,那么應(yīng)該選擇以上的哪種購買方案?且日租金最高為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖顯示了用計(jì)算機(jī)模擬隨機(jī)拋擲一枚硬幣的某次實(shí)驗(yàn)的結(jié)果
下面有三個推斷:
①當(dāng)拋擲次數(shù)是100時,計(jì)算機(jī)記錄“正面向上”的次數(shù)是47,所以“正面向上”的概率是0.47;
②隨著試驗(yàn)次數(shù)的增加,“正面向上”的頻率總在0.5附近擺動,顯示出一定的穩(wěn)定性,可以估計(jì)“正面向上”的概率是0.5;
③若再次用計(jì)算機(jī)模擬此實(shí)驗(yàn),則當(dāng)拋擲次數(shù)為150時,“正面向上”的頻率一定是0.45.
其中合理的是
A. ① B. ② C. ①② D. ①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,將△DEF與△ABC重合在一起,△ABC不動,△DEF運(yùn)動,并滿足:點(diǎn)E在邊BC上沿B到C的方向運(yùn)動,且DE始終經(jīng)過點(diǎn)A,EF與AC交于M點(diǎn).
(1)求證:△ABE∽△ECM;
(2)探究:在△DEF運(yùn)動過程中,重疊部分能否構(gòu)成等腰三角形?若能,求出BE的長;若不能,請說明理由;
(3)當(dāng)線段BE為何值時,線段AM最短,最短是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形 ABCD 中,AB=3,BC=4,E、F 是對角線 AC 上的兩個動點(diǎn),分 別從 A、C 同時出發(fā)相向而行,速度均為每秒 1 個單位長度,運(yùn)動時間為 t 秒,其中 0 t 5 .
(1)若 G,H 分別是 AB,DC 中點(diǎn),求證:四邊形 EGFH 是平行四邊形(E、F 相遇時除外);
(2)在(1)條件下,若四邊形 EGFH 為矩形,求 t 的值;
(3)若 G,H 分別是折線 A-B-C,C-D-A 上的動點(diǎn),與 E,F 相同的速度同時出發(fā),若 四邊形 EGFH 為菱形,求 t 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(a,﹣)在直線y=﹣上,AB∥y軸,且點(diǎn)B的縱坐標(biāo)為1,雙曲線y=經(jīng)過點(diǎn)B.
(1)求a的值及雙曲線y=的解析式;
(2)經(jīng)過點(diǎn)B的直線與雙曲線y=的另一個交點(diǎn)為點(diǎn)C,且△ABC的面積為.
①求直線BC的解析式;
②過點(diǎn)B作BD∥x軸交直線y=﹣于點(diǎn)D,點(diǎn)P是直線BC上的一個動點(diǎn).若將△BDP以它的一邊為對稱軸進(jìn)行翻折,翻折前后的兩個三角形所組成的四邊形為正方形,直接寫出所有滿足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1的正方形格中,每個小格的頂點(diǎn)叫格點(diǎn),以格點(diǎn)為頂點(diǎn)的三角形叫做格點(diǎn)三角形.已知中,,,.
(1)請你在圖中畫出格點(diǎn);(只畫一個即可)
(2)判斷是否為直角三角形?并說明理由;
(3)的面積為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com