【題目】如圖,已知平面內(nèi)有兩條直線AB、CD,且AB∥CD,P為一動(dòng)點(diǎn).
(1)當(dāng)點(diǎn)P移動(dòng)到AB、CD之間時(shí),如圖(1),這時(shí)∠P與∠A、∠C有怎樣的關(guān)系?證明你的結(jié)論.
(2)當(dāng)點(diǎn)P移動(dòng)到如圖(2)的位置時(shí),∠P與∠A、∠C又有怎樣的關(guān)系?請(qǐng)證明你的結(jié)論.
【答案】(1) ∠APC=∠A+∠C;(2) ∠APC+∠A+∠C=360°.
【解析】
(1)過點(diǎn)P作PE∥AB,根據(jù)平行線的性質(zhì)進(jìn)行推導(dǎo),即可得出∠APC=∠A+∠C;
(2)過點(diǎn)P作PE∥AB,根據(jù)平行線的性質(zhì)進(jìn)行推導(dǎo),即可得出∠APC+∠A+∠C=360°.
解:(1)∠APC=∠A+∠C.理由如下:
如圖1,過點(diǎn)P作PE∥AB,
∵AB∥CD,
∴AB∥CD∥PE,
∴∠A=∠APE,∠C=∠CPE,
∴∠APC=∠APE+∠CPE=∠A+∠C.
故答案為:∠APC=∠A+∠C.
(2)∠APC+∠A+∠C=360°,理由如下:
如圖2,過點(diǎn)P作PE∥AB,
∵AB∥CD,
∴AB∥CD∥PE,
∴∠A+∠APE=180°,∠C+∠CPE=180°,
∴∠APE+∠A+∠C+∠CPE=360°;
∴∠APC+∠A+∠C=360°.
故答案為:∠APC+∠A+∠C=360°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、B分別是直線a和b上的點(diǎn),∠1=∠2,C、D在兩條直線之間,且∠C=∠D.
(1) 證明:a∥b;
(2) 如圖,∠EFG=60°,EF交a于H,FG交b于I,HK∥FG,若∠4=2∠3,判斷∠5、∠6的數(shù)量關(guān)系,并說明理由;
(3) 如圖∠EFG是平角的n分之1(n為大于1的整數(shù)),FE交a于H,FG交b于I.點(diǎn)J在FG上,連HJ.若∠8=n∠7,則∠9:∠10=______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:在平面直角坐標(biāo)系xOy中,把從點(diǎn)P出發(fā)沿縱或橫方向到達(dá)點(diǎn)Q(至多拐一次彎)的路徑長(zhǎng)稱為P,Q的“實(shí)際距離”.如圖,若P(﹣1,1),Q(2,3),則P,Q的“實(shí)際距離”為5,即PS+SQ=5或PT+TQ=5.環(huán)保低碳的共享單車,正式成為市民出行喜歡的交通工具.設(shè)A,B,C三個(gè)小區(qū)的坐標(biāo)分別為A(3,1),B(5,﹣3),C(﹣1,﹣5),若點(diǎn)M表示單車停放點(diǎn),且滿足M到A,B,C的“實(shí)際距離”相等,則點(diǎn)M的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c與x軸交于點(diǎn)A,B,AB=2,與y軸交于點(diǎn)C,對(duì)稱軸為直線x=2.
(1)求拋物線的解析式;
(2)設(shè)P為對(duì)稱軸上一動(dòng)點(diǎn),求△APC周長(zhǎng)的最小值;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)初三年級(jí)的同學(xué)參加了一項(xiàng)節(jié)能的社會(huì)調(diào)查活動(dòng),為了了解家庭用電的情況,他們隨即調(diào)查了某地50個(gè)家庭一年中生活用電的電費(fèi)支出情況,并繪制了如下不完整的頻數(shù)分布表和頻數(shù)分布直方圖(費(fèi)用取整數(shù),單位:元).
分組/元 | 頻 數(shù) | 頻 率 |
1000<x<1200 | 3 | 0.060 |
1200<x<1400 | 12 | 0.240 |
1400<x<1600 | 18 | 0.360 |
1600<x<1800 | a | 0.200 |
1800<x<2000 | 5 | b |
2000<x<2200 | 2 | 0.040 |
合計(jì) | 50 | 1.000 |
請(qǐng)你根據(jù)以上提供的信息,解答下列問題:
(1)補(bǔ)全頻數(shù)分布表a= ,b= ,和頻數(shù)分布直方圖;
(2)這50個(gè)家庭電費(fèi)支出的中位數(shù)落在哪個(gè)組內(nèi)?
(3)若該地區(qū)有3萬(wàn)個(gè)家庭,請(qǐng)你估計(jì)該地區(qū)有多少個(gè)一年電費(fèi)支出低于1400元的家庭?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中,于E,,D是AE上的一點(diǎn),且,連接BD,CD.
試判斷BD與AC的位置關(guān)系和數(shù)量關(guān)系,并說明理由;
如圖2,若將繞點(diǎn)E旋轉(zhuǎn)一定的角度后,試判斷BD與AC的位置關(guān)系和數(shù)量關(guān)系是否發(fā)生變化,并說明理由;
如圖3,若將中的等腰直角三角形都換成等邊三角形,其他條件不變.
試猜想BD與AC的數(shù)量關(guān)系,請(qǐng)直接寫出結(jié)論;
你能求出BD與AC的夾角度數(shù)嗎?如果能,請(qǐng)直接寫出夾角度數(shù);如果不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.
(1)求證:△ADC≌△CEB.
(2)AD=5cm,DE=3cm,求BE的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,以的AC邊為直徑作交斜邊AB于點(diǎn)E,連接EO并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)D,作交BC于點(diǎn)F,連接EF.
求證:
求證:EF是的切線;
若的半徑為3,,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù),(k為常數(shù),k≠1).
(1)若點(diǎn)A(1,2)在這個(gè)函數(shù)的圖象上,求k的值;
(2)若在這個(gè)函數(shù)圖象的每一分支上,y隨x的增大而增大,求k的取值范圍;
(3)若k=13,試判斷點(diǎn)B(3,4),C(2,5)是否在這個(gè)函數(shù)的圖象上,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com