【題目】已知:AC是菱形ABCD的對(duì)角線,且AC=BC

(1)如圖①,點(diǎn)P是△ABC的一個(gè)動(dòng)點(diǎn),將△ABP繞著點(diǎn)B旋轉(zhuǎn)得到△CBE

①求證:△PBE是等邊三角形;

②若BC=5,CE=4,PC=3,求∠PCE的度數(shù);

(2)連結(jié)BDAC于點(diǎn)O,點(diǎn)EOD上且DE=3,AD=4,點(diǎn)G是△ADE內(nèi)的一個(gè)動(dòng)點(diǎn)如圖②,連結(jié)AG,EG,DG,求AG+EG+DG的最小值.

【答案】1)①見(jiàn)解析,②∠PCE=30°;(2AG+EG+DG的最小值為5

【解析】

(1)①先判斷出△ABC等邊三角形,得出∠ABC=60°,再由旋轉(zhuǎn)知BP=BE,∠PBE=ABC=60°,即可得出結(jié)論.

②先用勾股定理的逆定理判斷出△ACP是直角三角形,得出∠APC=90°,進(jìn)而判斷出∠PBE+PCE=90°,即可得出結(jié)論;

(2)先判斷出△G'DG是等邊三角形,得出GG'=DG,即:AG+EG+DG=A'G'+EG+GG'得出當(dāng)A'G'、GE四點(diǎn)共線時(shí),A'G'+EG+G'G的值最小,即可得出結(jié)論.

解:(1)①∵四邊形ABCD是菱形

AB=BC

AC=BC,

AB=BC=AC

∴△ABC等邊三角形,

∴∠ABC=60°

由旋轉(zhuǎn)知BP=BE,∠CBE=∠ABP

∠CBE+∠PBC=∠ABP+∠PBC

∴∠PBE=ABC=60°

∴△PBE是等邊三角形;

②由①知AB=BC=5

∵由旋轉(zhuǎn)知△ABP≌△CBE,

AP=CE=4,∠APB=BEC,

AP2+PC2=42+32=25=AC2,

∴△ACP是直角三角形,

∴∠APC=90°

∴∠APB+BPC=270°,

∵∠APB=CEB,

∴∠CEB+BPC=270°,

∴∠PBE+PCE=360°-(∠CEB+BPC=90°,

∵∠PBE=ABC=60°,

∴∠PCE=90°-60°=30°

(2)如圖,將△ADG繞著點(diǎn)D順時(shí)針旋轉(zhuǎn)60°得到△A'DG',

由旋轉(zhuǎn)知△ADG≌△A'DG',

A'D=AD=4G'D=GD,A'G'=AG,

∵∠G'DG=60°,G'D=GD

∴△G'DG是等邊三角形,

GG'=DG,

AG+EG+DG=A'G'+EG+GG'

∵當(dāng)A'G'、GE四點(diǎn)共線時(shí),A'G'+EG+G'G的值最小,

AG+EG+DG的值最小,

∵∠A'DA=60°,∠ADE=ADC=30°,

∴∠A'DE=90°,

AG+EG+DG=A'G'+EG+G'G=A'E==5,

AG+EG+DG的最小值為5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=kx+b經(jīng)過(guò)點(diǎn)A-5,0),B-1,4

1)求直線AB的表達(dá)式;

2)求直線CEy=-2x-4與直線ABy軸圍成圖形的面積;

3)根據(jù)圖象,直接寫(xiě)出關(guān)于x的不等式kx+b-2x-4的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】班級(jí)元旦晚會(huì)上,主持人給大家?guī)?lái)了一個(gè)有獎(jiǎng)競(jìng)猜題,他在一個(gè)不透明的袋子中放了若干個(gè)形狀大小完全相同的白球,想請(qǐng)大家想辦法估計(jì)出袋中白球的個(gè)數(shù).?dāng)?shù)學(xué)課代表小明是這樣來(lái)估計(jì)的:他先往袋中放入10個(gè)形狀大小與白球相同的紅球,混勻后再?gòu)拇又须S機(jī)摸出20個(gè)球,發(fā)現(xiàn)其中有4個(gè)紅球.如果設(shè)袋中有白球x個(gè),根據(jù)小明的方法用來(lái)估計(jì)袋中白球個(gè)數(shù)的方程是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖1,△ABC為等腰直角三角形,∠ACB90°,先將三角板的90°角與∠ACB重合,再將三角板繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)(旋轉(zhuǎn)角大于且小于45°).旋轉(zhuǎn)后三角板的一直角邊與AB交于點(diǎn)D.在三角板另一直角邊上取一點(diǎn)F,使CFCD,線段AB上取點(diǎn)E,使∠DCE45°,連接AF,EF.請(qǐng)?zhí)骄拷Y(jié)果:

直接寫(xiě)出∠EAF的度數(shù)=__________度;若旋轉(zhuǎn)角∠BCDα°,則∠AEF____________度(可以用含α的代數(shù)式表示);

②DEEF相等嗎?請(qǐng)說(shuō)明理由;

(類比探究)

2)如圖2,△ABC為等邊三角形,先將三角板中的60°角與∠ACB重合,再將三角板繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)(旋轉(zhuǎn)角大于且小于30°).旋轉(zhuǎn)后三角板的一直角邊與AB交于點(diǎn)D.在三角板斜邊上取一點(diǎn)F,使CFCD,線段AB上取點(diǎn)E,使∠DCE30°,連接AF,EF

直接寫(xiě)出∠EAF的度數(shù)=___________度;

AE1,BD2,求線段DE的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:

在數(shù)學(xué)課上,老師提出如下問(wèn)題:尺規(guī)作圖:作已知角的角平分線.已知:如圖,∠BAC.求作:∠BAC的角平分線AP.

小欣的作法如下:

(1)如圖,在平面內(nèi)任取一點(diǎn)O;

(2)以點(diǎn)O為圓心,AO為半徑作圓,交射線AB于點(diǎn)D,交射線AC于點(diǎn)E;

(3)連接DE,過(guò)點(diǎn)O作射線OP垂直于線段DE,交⊙O于點(diǎn)P;

(4)過(guò)點(diǎn)P作射線AP.

所以射線AP為所求

根據(jù)小欣設(shè)計(jì)的尺規(guī)作圖過(guò)程,

(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)

(2)完成下面的證明.

證明:∵OPDE

=______(________________________)(填推理的依據(jù)),

∴∠BAP=______ (________________________)(填推理的依據(jù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】填幻方:將1、2、34、56、7、8、9這九個(gè)數(shù)字分別填在如圖所示的九個(gè)空格中,要求每一行從左到右的數(shù)字逐漸增大,每一列從上到下的數(shù)字也逐漸增大.當(dāng)數(shù)字2、4固定在圖中所示的位置時(shí),按規(guī)則填寫(xiě)空格,所有可能出現(xiàn)的結(jié)果有( 。

A.4B.6C.8D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)已知:a2,b+2,求代數(shù)式a2bab2的值;

2)已知實(shí)數(shù)x、y滿足x2+10x++250,則(x+y2019的值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線l:y=﹣x+6y軸于點(diǎn)A,與x軸交于點(diǎn)B,過(guò)A、B兩點(diǎn)的拋物線mx軸的另一個(gè)交點(diǎn)為C,(CB的左邊),如果BC=5,求拋物線m的解析式,并根據(jù)函數(shù)圖像指出當(dāng)m的函數(shù)值大于0的函數(shù)值時(shí)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】前年甲廠全年的產(chǎn)值比乙廠多12萬(wàn)元,在其后的兩年內(nèi),兩個(gè)廠的產(chǎn)值都有所增加:甲廠每年的產(chǎn)值比上一年遞增10萬(wàn)元,而乙廠每年的產(chǎn)值比上一年增加相同的百分?jǐn)?shù).去年甲廠全年的產(chǎn)值仍比乙廠多6萬(wàn)元,而今年甲廠全年產(chǎn)值反而比乙廠少3.2萬(wàn)元.前年甲乙兩車全年的產(chǎn)值分別是多少?乙廠每年的產(chǎn)值遞增的百分?jǐn)?shù)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案