【題目】如圖,在ABC中,AB=4.41cm,BC=8.83cm,PBC上一動點,連接AP,設P,C兩點間的距離為xcm,P,A兩點間的距離為ycm.(當點P與點C重合時,x的值為0)小東根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.下面是小東的探究過程,請補充完整:

(1)通過取點、畫圖、測量,得到了xy的幾組值,如表:

x/cm

0

0.43

1.00

1.50

1.85

2.50

3.60

4.00

4.30

5.00

5.50

6.00

6.62

7.50

8.00

8.83

y/cm

7.65

7.28

6.80

6.39

6.11

5.62

4.87

  

4.47

4.15

3.99

3.87

3.82

3.92

4.06

4.41

(說明:補全表格時相關數(shù)值保留一位小數(shù))

(2)建立平面直角坐標系,描出以補全后的表中各對對應值為坐標的點,畫出該函數(shù)的圖象;

(3)結合畫出的函數(shù)圖象,解決問題:當PA=PC時,PC的長度約為  cm.(結果保留一位小數(shù))

【答案】(1)4.6;(2)畫圖見解析;(3)4.4

解:(1)通過測量得4.6

(2)根據(jù)數(shù)據(jù)描點畫圖得

(3)根據(jù)題意,所畫圖與直線y=x交點,則測量得4.4

【解析】

根據(jù)題意,取點、畫圖、測量問題可解.

解:(1)通過測量得4.6

2)根據(jù)數(shù)據(jù)描點畫圖得

3)根據(jù)題意,所畫圖與直線y=x交點,則測量得4.4

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,先描出點,點.

1)描出點關于軸的對稱點的位置,寫出的坐標 ;

2)用尺規(guī)在軸上找一點,使的值最小(保留作圖痕跡);

3)用尺規(guī)在軸上找一點,使(保留作圖痕跡).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】10分在RtABC中,BAC=,D是BC的中點,E是AD的中點過點A作AFBC交BE的延長線于點F

1求證:AEFDEB

2證明四邊形ADCF是菱形;

3AC=4,AB=5,求菱形ADCFD 的面積

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線y=x2﹣(3m+1)x+2m2+m(m>0),與y軸交于點C,與x軸交于點A(x1,0),B(x2,0),且x1<x2

(1)求2x1﹣x2+3的值;

(2)當m=2x1﹣x2+3時,將此拋物線沿對稱軸向上平移n個單位,使平移后得到的拋物線頂點落在ABC的內部(不包括ABC的邊),求n的取值范圍(直接寫出答案即可).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是求作∠AOB的角平分線的尺規(guī)作圖過程.

已知:如圖,鈍角∠AOB.

求作:∠AOB的角平分線.

作法:

①在OAOB上,分別截取OD、OE,使OD=OE;

②分別以D、E為圓心,大于DE的長為半徑作弧,在∠AOB內,兩弧交于點C;

③作射線OC.

所以射線OC就是所求作的∠AOB的角平分線.

請回答:該尺規(guī)作圖的依據(jù)是__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】動手操作:
如圖,已知ABCD,A為圓心,小于AC長為半徑作圓弧,分別交AB,ACE,F兩點,再分別以點E,F為圓心,大于EF長為半徑作圓弧,兩條圓弧交于點P,作射線AP,交CD于點M.
問題解決:

(1)若∠ACD=78°,求∠MAB的度數(shù);
(2)CNAM,垂足為點N,求證:CAN≌△CMN.
實驗探究:
(3)直接寫出當∠CAB的度數(shù)為多少時?CAM分別為等邊三角形和等腰直角三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,∠ADB=23°,EAD上一點.將矩形沿CE折疊,點D的對應點F恰好落在BC上,CEBDH,連接HF,則∠BHF=__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形是菱形,上,延長線上,相交于點,若,,的長為,則菱形的面積為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線的圖象先向右平移個單位長度,再向下平移個單位長度,所得圖象的解析式是,則

A. 13 B. 11 C. 10 D. 12

查看答案和解析>>

同步練習冊答案