【題目】在梯形ABCD中,AD∥BC,∠ABC=90°,對角線AC、BD相交于點O.下列條件中,不能判斷對角線互相垂直的是( )
A.∠1=∠4
B.∠1=∠3
C.∠2=∠3
D.OB2+OC2=BC2
科目:初中數學 來源: 題型:
【題目】某市居民使用自來水按如下標準收費(水費按月繳納):
(1)當a=2時,某用戶一個月用了 28m3水,求該用戶這個月應繳納的水費;
(2)設某戶月用水量為m立方米,當 m>20時,則該用戶應繳納的的水費為________元(用含 a、m的整式表示);
(3)當a=2時,甲、乙兩用戶一個月共用水 40m3,已知甲用戶繳納的水費超過了24元,設甲用戶這個月用水xm3,試求甲、乙兩用戶一個月共繳納的水費(用含 x的整式表示)。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】探究:數軸上任意兩點之間的距離與這兩點對應的數的關系.
(1)如果點A表示數5,將點A先向左移動4個單位長度到達點B,那么點B表示的數是 ,A、B兩點間的距離是 .
如果點A表示數﹣2,將點A向右移動5個單位長度到達點B,那么點B表示的數是 ,A、B兩點間的距離是 .
(2)發(fā)現:在數軸上,如果點M對應的數是m,點N對應的數是n,那么點M與點N之間的距離可表示為 (用m、n表示,且m≥n).
(3)應用:利用你發(fā)現的結論解決下列問題:數軸上表示x和﹣2的兩點P與Q之間的距離是3,則x= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】按下面的程序計算:當輸入x=100 時,輸出結果是299;當輸入x=50時,輸出結果是446;如果輸入 x 的值是正整數,輸出結果是257,那么滿足條件的x的值最多有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】光明中學有兩塊邊長為x米的正方形空地,現設想按兩種方式種植草皮,方式一:如圖①,在正方形空地上留兩條寬為2m米的路,其余種植草皮;方式二:如圖②,在正方形空地四周各留一塊邊長為m米的正方形空地植樹,其余種植草皮.學校準備兩種方式都用5000元購進草皮.
(1)寫出按圖①,②兩種方式購買草皮的單價;
(2)當x=14,m=2時,求按兩種方式購買草皮的單價各是多少(結果均保留整數).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是一個組合煙花的橫截面,其中16個圓的半徑相同,點A、B、C、D分別是四個角上的圓的圓心,且四邊形ABCD為正方形.若圓的半徑為r,組合煙花的高為h,則組合煙花側面包裝紙的面積至少需要(接縫面積不計)( )
A.26πrh
B.24rh+πrh
C.12rh+2πrh
D.24rh+2πrh
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小聰和小明沿同一條筆直的馬路同時從學校出發(fā)到某圖書館查閱資料,學校與 圖書館的路程是 千米,小聰騎自行車,小明步行,當小聰從原路回到學校時,小明剛好到 達圖書館,圖中折線 和線段 分別表示兩人離學校的路程 (千米)與所經過的 時間 (分鐘)之間的函數關系,請根據圖像回答下列問題:
(1)小聰在圖書館查閱資料的時間為 分鐘;小聰返回學校的速度為 千米/分鐘.
(2)請你求出小明離開學校的路程 (千米)與所經過的時間 (分鐘)之間的函數表達式;
(3)若設兩人在路上相距不超過 千米時稱為可以“互相望見”,則小聰和小明可以“互相 望見”的時間共有多少分鐘?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將正整數按如圖方式進行有規(guī)律的排列,第2行最后一個數是4,第3行最后一個數是7,第4行最后一個數是10,…,依此類推,第10行第2個數是__________,第__________行最后一個數是2 020.
1
2 3 4
3 4 5 6 7
4 5 6 7 8 9 10
5 6 7 8 9 10 11 12 13
…
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC和△ADE中,點E在BC邊上,∠BAC=∠DAE,∠B=∠D, AB=AD.
(1)試說明△ABC≌△ADE;
(2)如果∠AEC=75°,將△ADE繞點A旋轉一個銳角后與△ABC重合,求這個旋轉角的大。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com