【題目】在△ABC中,AB5,AC4,BC3.若點P在△ABC內(nèi)部(含邊界)且滿足PCPAPB,則所有點P組成的區(qū)域的面積為_____

【答案】

【解析】

分別作ABAC的垂直平分線,交AB于點E,交AC于點F,交AC于點D,利用線段垂直平分線的性質(zhì),結(jié)合PC≤PA≤PB的條件,判斷點PDEF內(nèi)部(含邊界),再利直角三角形的性質(zhì)求解;

解:分別作AB,AC的垂直平分線,交AB于點E,交AC于點F,交AC于點D,

∵若點PABC內(nèi)部(含邊界)且滿足PC≤PA≤PB

∴點PDEF內(nèi)部(含邊界),

DEAC,EFAB,

∴△DEF是直角三角形,AEF是直角三角形,

AB5,AC4BC3,

AD2,AE2.5,DE1.5

AE2ADAF,

AF

DF,

∴△DEF的面積為;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一圓柱,其高為12cm,它的底面半徑為3cm,在圓柱下底面A處有一只螞蟻,它想得到上面B處的食物,則螞蟻經(jīng)過的最短距離為_________.(π取3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P在正方形ABCDAD上,連接PB.過點B作一條射線與邊DC的延長線交于點Q,使得∠QBE=∠PBC,其中E是邊AB延長線上的點,連接PQ.若PQ2PB2+PD2+2,則△PAB的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線l過點M(3,0),且平行于y軸.

(1)如果△ABC三個頂點的坐標(biāo)分別是A(﹣2,0),B(﹣1,0),C(﹣1,2),△ABC關(guān)于y軸的對稱圖形是△A1B1C1,△A1B1C1關(guān)于直線l的對稱圖形是△A2B2C2,寫出△A2B2C2的三個頂點的坐標(biāo);

(2)如果點P的坐標(biāo)是(﹣a,0),其中a>0,點P關(guān)于y軸的對稱點是P1,點P1關(guān)于直線l的對稱點是P2,求PP2的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC和DEB中,已知AB=DE,還需添加兩個條件才能使ABC≌△DEC,不能添加的一組條件是

A.BC=EC,B=E B.BC=EC,AC=DC

C.BC=DC,A=D D.B=E,A=D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,五邊形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,E=115°,則∠BAE的度數(shù)為何?( 。

A. 115 B. 120 C. 125 D. 130

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC和△ADE中,AB=AC,AD=AE,且∠BAC=DAE,點EBC上.過點DDFBC,連接DB.

求證:(1)ABD≌△ACE;

(2)DF=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:一組數(shù)據(jù)x1,x2,x3,x4,x5的平均數(shù)是2,方差是,那么另一組數(shù)據(jù)3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均數(shù)和方差分別是(  )

A. 2, B. 4,3 C. 4, D. 2,1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店分兩次購進A,B兩種商品進行銷售,兩次購進同一種商品的進價相同,具體情況如下表所示:

購進數(shù)量(件)

購進所需費用(元)

A

B

第一次

20

30

2800

第二次

30

20

2200

(1)求A、B兩種商品每件的進價分別是多少元?

(2)商場決定A種商品以每件30元出售,B種商品以每件100元出售.為滿足市場需求,需購進A、B兩種商品共1000件,且A種商品的數(shù)量不少于B種商品數(shù)量的4倍,請你求出獲利最大的進貨方案,并確定最大利潤.

查看答案和解析>>

同步練習(xí)冊答案