【題目】如圖,某超市利用一個帶斜坡的平臺裝卸貨物,其縱斷面ACFE如圖所示.AE為臺面,AC垂直于地面,AB表示平臺前方的斜坡.斜坡的坡角∠ABC為45°,坡長AB為2m.為保障安全,又便于裝卸貨物,決定減小斜坡AB的坡角,AD 是改造后的斜坡(點D在直線BC上),坡角∠ADC為31°.求斜坡AD底端D與平臺AC的距離CD.(結(jié)果精確到0.01m)[參考數(shù)據(jù):sin31°=0.515,cos31°=0.857,tan31°=0.601, ≈1.414].

【答案】解:在Rt△ABC中,
∵∠ABC=53°,AB=2m,
∴AC=ABsin45°=2 (m)

在Rt△ADC中,∵∠ADC=31°,
,

答:斜坡AD底端D與平臺AC的距離CD約為2.36m
【解析】首先根據(jù)∠ABC=45°,AB=2m,在Rt△ABC中,求出AC的長度,然后根據(jù)∠ADC=31°,利用三角函數(shù)的知識在Rt△ACD中求出CD的長度.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個y關(guān)于x的函數(shù)同時滿足兩個條件:①圖象過(2,1)點;②當(dāng)x>0時,y隨x的增大而減。@個函數(shù)解析式為 . (寫出一個即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,AC、FD在同一直線上,AFDC,ABDEABDE.

求證:(1) △ABC≌△DEF;

(2)BCEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題8分)如圖,在五邊形ABCDE中,BCD=EDC=90°,BC=ED,AC=AD

(1)求證:ABC≌△AED;

(2)當(dāng)B=140°時,求BAE的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校的復(fù)印任務(wù)原來由甲復(fù)印社承接,其收費y(元)與復(fù)印頁數(shù)x(頁)的關(guān)系如下表:

x(頁)

100

200

400

1000

y(元)

40

80

160

400

(1)若y與x滿足初中學(xué)過的某一函數(shù)關(guān)系,求函數(shù)的解析式;

(2)現(xiàn)在乙復(fù)印社表示:若學(xué)校先按每月付給200元的承包費,則可按每頁0.15元收費,則乙復(fù)印社每月收費y(元)與復(fù)印頁數(shù)x(頁)的函數(shù)關(guān)系為________________,

(3)學(xué)校準(zhǔn)備復(fù)印材料1000頁,應(yīng)選擇哪個復(fù)印社比較優(yōu)惠?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O為菱形ABCD對角線的交點,DE∥AC,CE∥BD.

(1)試判斷四邊形OCED的形狀,并說明理由;
(2)若AC=6,BD=8,求線段OE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C在⊙O上,連接AC,BC,點D是BA延長線上一點,且AC=AD,若∠B=30°,AB=2,則CD的長是( )

A.
B.2
C.1
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,若四邊形ABCO是平行四邊形,則∠ADC的大小為(

A.45°
B.50°
C.60°
D.75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點.

(1)求該拋物線的解析式;
(2)求該拋物線的對稱軸以及頂點坐標(biāo);
(3)設(shè)(1)中的拋物線上有一個動點P,當(dāng)點P在該拋物線上滑動到什么位置時,滿足SPAB=8,并求出此時P點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案