【題目】如圖,已知O為坐標原點,點A的坐標為(2,3),A的半徑為1,過A作直線l平行于x軸,點Pl上運動.

(1)當點P運動到圓上時,求線段OP的長.

(2)當點P的坐標為(4,3)時,試判斷直線OP與⊙A的位置關系,并說明理由.

【答案】(1);(2)直線OP與⊙A相離,詳見解析.

【解析】

(1)要注意考慮兩種情況,根據勾股定理計算其距離;
(2)根據相似三角形的性質求得圓心到直線的距離,再進一步根據數(shù)量關系判斷其位置關系.

解:(1)如圖,設ly軸交點為C.

當點P運動到圓上時,有P1、P2兩個位置,

;

(2)連接OP,過點AAMOP,垂足為M.

P(4,3),

CP=4,AP=2.

RtOCP

∵∠APM=OPC,PMA=PCO=90°,

∴△PAM∽△POC.

,

,

,

∴直線OP與⊙A相離.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如下表,方程1、方程2、方程3…是按照一定規(guī)律排列的一列方程。

1)猜想方程1的解,并將它們的解填在表中的空白處。

序號

方程

方程的解(

1

_________,__________

2

3

……

……

2)若方程的解是,猜想a,b的值。

3)請寫出這列方程中的第n個方程和它的解。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A1,A2,A3,…,An是x軸上的點,且OA1=A1A2=A2A3=A3A4=…=An-1An=1,分別過點A1,A2,A3,…,An作x軸的垂線交二次函數(shù)y=x2(x>0)的圖象于點P1,P2,P3,…,Pn.若記△OA1P1的面積為S1,過點P1作P1B1⊥A2P2于點B1,記△P1B1P2的面積為S2,過點P2作P2B2⊥A3P3于點B2,記△P2B2P3的面積為S3……依次進行下去,最后記△Pn-1Bn-1Pn(n>1)的面積為Sn,則Sn=(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小亮房間窗戶的窗簾如圖1所示,它是由兩個四分之一圓組成(半徑相同)

請用代數(shù)式表示裝飾物的面積:________,用代數(shù)式表示窗戶能射進陽光的面積是______(結果保留π)

⑵當a=,b=1時,求窗戶能射進陽光的面積是多少?(取π≈3

⑶小亮又設計了如圖2的窗簾(由一個半圓和兩個四分之一圓組成,半徑相同),請你幫他算一算此時窗戶能射進陽光的面積是否更大?如果更大,那么大多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD內接于半圓O,其中點A,D在直徑上,點B,C在半圓弧上,ABCD,B=90°,若AO=3,BAD=120°,則BC=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的方程x2﹣2(k+1)x+k2=0有兩個實數(shù)根x1、x2

(1)求k的取值范圍;

(2)若x1+x2=3x1x2﹣6,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一輛汽車和一輛摩托車分別從A,B兩地去同一城市,l1 ,l2分別表示汽車摩托車離A地的距離s(km)隨時間t(h)變化的圖象,則下列結論:摩托車比汽車晚到1 h;②A,B兩地的距離為20 km;③摩托車的速度為45 km/h,汽車的速度為60 km/h;④汽車出發(fā)1 h后與摩托車相遇,此時距離B40 km;⑤相遇前摩托車的速度比汽車的速度快.其中正確的結論有( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C為線段AE上一動點(不與點A,E重合),在AE同側分別作正△ABC和正△CDE,ADBE交于點O,ADBC交于點P,BECD交于點Q,連接PQ.以下五個結論:①AD=BE;②PQAE;③AP=BQ;④CO平分∠AOE;⑤∠AOB=60°.恒成立的結論有__.(把你認為正確的序號都填上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某課外興趣活動小組準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊周長為30米的籬笆圍成.已知墻長為18米(如圖所示),設這個苗圃園垂直于墻的一邊長為x米.

(1)若苗圃園的面積為72平方米,求x

(2)若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由;

(3)當這個苗圃園的面積不小于100平方米時,直接寫出x的取值范圍.

查看答案和解析>>

同步練習冊答案