【題目】如圖,矩形ABCD中,點E,F分別在AD,BC上,且AEDEBC3BF,連接EF,將矩形ABCD沿EF折疊,點A恰好落在BC邊上的點G處,則cosEGF的值為_____

【答案】

【解析】

連接AF,由矩形的性質(zhì)得ADBCADBC,由平行線的性質(zhì)得∠AEF=∠GFE,由折疊的性質(zhì)得∠AFE=∠GFE,AFFG,推出∠AEF=∠AFE,則AFAE,AEFG,得出四邊形AFGE是菱形,則AFEG,得出∠EGF=∠AFB,設BF2x,則ADBC6x,AFAEFG3x,在RtABF中,cosAFB,即可得出結果.

解:連接AF,如圖所示:

∵四邊形ABCD為矩形,

ADBCADBC,

∴∠AEF=∠GFE

由折疊的性質(zhì)可知:∠AFE=∠GFE,AFFG,

∴∠AEF=∠AFE,

AFAE,

AEFG,

∴四邊形AFGE是菱形,

AFEG,

∴∠EGF=∠AFB

BF2x,則ADBC6x,AFAEFG3x

RtABF中,cosAFB

cosEGF,

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某初中學生為了解該校學生喜歡球類活動的情況,隨機抽取了若干名學生進行問卷調(diào)查(要求每位學生只能填寫一種自己喜歡的球類),并將調(diào)査的結果繪制成如下的兩幅不完整的統(tǒng)計圖.

請根據(jù)圖中提供的信息,解答下面的問題

1)參加調(diào)査的學生共有   人,在扇形圖中,表示“其他球類”的扇形圓心角為   度;

2)將條形圖補充完整;

3)若該校有2300名學生,則估計喜歡“足球”的學生共有   人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,正方形ABCD中,EBC邊上一點,連接AE,作AE的垂直平分線交ABG,交CDF,若BG2BE,則DFCF的長為( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1ABC中,ACB=90°,AC=3,BC=4,延長BC到點D,使BD=BAPBC邊上一點.點Q在射線BA上,PQ=BP,以點P為圓心,PD長為半徑作P,交AC于點E,連接PQ,設PC=x

1AB=    ,CD=    ,當點QP上時,求x的值;

2x為何值時,PAB相切?

3)當PC=CD時,求陰影部分的面積;

4)若PABC的三邊有兩個公共點,直接寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探究:(1)如圖1是一個長為4a、寬為b的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后用四塊小長方形拼成一個“回形”正方形(如圖2),請你寫出、、ab之間的等量關系是______________;

2)兩個邊長分別為ab的正方形如圖放置(圖3),求出圖3中陰影部分的面積;

3)若,,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點O為坐標原點,直線x,y軸分別交于點A,B兩點,直線y=2x+3m軸分別交于兩點,兩直線交于點E,點P在射線CA上,點Q在射線AE上,分別連接交于點F,且

1)若點E的橫坐標為,求的值

2)當時,過點P于點M,過點E于點N,求證:

3)在(1)的條件下,當時,過點PAB于點G,點K在射線CQ上,射線EK交直線于點L,射線交直線于點R,連接,當時,求KLR到的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線L: 常數(shù)t0x軸從左到右的交點為B,A,過線段OA的中點MMPx軸,交雙曲線于點P,且OA·MP=12.

1k值;

2t=1時,求AB長,并求直線MPL對稱軸之間的距離;

3L在直線MP左側部分的圖象含與直線MP的交點記為G,用t表示圖象G最高點的坐標;

4L與雙曲線有個交點的橫坐標為x0,且滿足4x06,通過L位置隨t變化的過程,直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在△ABC中,ABAC,∠BACα,直線l經(jīng)過點A(不經(jīng)過點B或點C),點C關于直線l的對稱點為點D,連接BD,CD.

(1)如圖1

①求證:點B,C,D在以點A為圓心,AB為半徑的圓上.

②直接寫出∠BDC的度數(shù)(用含α的式子表示)______.

(2)如圖2,當α60°時,過點DBD的垂線與直線l交于點E,求證:AEBD.

(3)如圖3,當α90°時,記直線lCD的交點為F,連接BF.將直線l繞點A旋轉,當線段BF的長取得最大值時,直接寫出tanFBC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某報社為了解溫州市民對大范圍霧霾天氣的成因、影響以及應對措施的看法,做了一次抽樣調(diào)查,調(diào)查結果共分為四個等級:A.非常了解:B.比較了解:C.基本了解;D.不了解.根據(jù)調(diào)查統(tǒng)計結果,繪制了不完整的三種統(tǒng)計圖表.請結合統(tǒng)計圖表,回答下列問題:

對霧霾的了解程度

百分比

A

非常了解

5%

B

比較了解

m%

C

基本了解

45%

D

不了解

n%

1)本次參與調(diào)查的市民共有________人,m=________,n=________

2)統(tǒng)計圖中扇形D的圓心角是________.

3)某校準備開展關于霧霾的知識競賽,九(3)班鄭老師欲從2名男生和1名女生中任選2人參加比賽,求恰好選中“11的概率(要求列表或畫樹狀圖).

查看答案和解析>>

同步練習冊答案