【題目】如圖,在平面直角坐標(biāo)系中,已知直線y=kx+6與x軸、y軸分別交于A,B兩點,且△ABO的面積為12.
(1)求k的值;
(2)若點P為直線AB上的一動點,P點運動到什么位置時,△PAO是以O(shè)A為底的等腰三角形?求出此時點P的坐標(biāo);
(3)在(2)的條件下,連接PO,△PBO是等腰三角形嗎?如果是,試說明理由;如果不是,請在線段AB上求一點C,使得△CBO是等腰三角形.
【答案】(1) ;(2)P點坐標(biāo)為(-2,3);(3)是,理由見解析
【解析】試題分析:(1)令x=0代入y=kx+b得出點B的坐標(biāo),根據(jù)△ABO的面積易求點A的坐標(biāo).把點A的坐標(biāo)代入解析式求出k值即可; (2)過點P作OA的垂線交OA于點M,連接OP.根據(jù)等腰三角形的三線合一的性質(zhì)推出點P的橫坐標(biāo),代入解析式可求出點P的縱坐標(biāo),從而求出點P的坐標(biāo);(3)△PBO是等腰三角形,根據(jù)已知條件易證∠ABO=∠POB,即可證得結(jié)論.
試題解析:
(1)對于y=kx+6,設(shè)x=0,得y=6.
∴B(0,6),OB=6.
∵△ABO的面積為12,
∴AO·OB=12,即AO×6=12.
解得OA=4.
∴A(-4,0).
把A(-4,0)代入y=kx+6,得-4k+6=0.
解得k=.
(2)過點P作OA的垂線交OA于點M,連接OP.
∵PA=PO,PM⊥OA,
∴OM=OA=2.
∴可設(shè)P(-2,n).
把P(-2,n)代入y=x+6,得n=3.
∴P點坐標(biāo)為(-2,3).
(3)△PBO是等腰三角形.理由如下:
∵△PAO是以OA為底的等腰三角形,
∴∠PAO=∠POA.
∵∠PAO+∠ABO=90°,∠POA+∠POB=90°,
∴∠ABO=∠POB.
∴PB=PO.
∴△PBO是等腰三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c交x軸于點A(﹣3,0)和點B,交y軸于點C(0,3).
(1)求拋物線的函數(shù)表達式;
(2)若點P在拋物線上,且S△AOP=4SBOC,求點P的坐標(biāo);
(3)如圖b,設(shè)點Q是線段AC上的一動點,作DQ⊥x軸,交拋物線于點D,求線段DQ長度的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的頂點C與原點O重合,點B在y軸的正半軸上,點A在反比例函數(shù)y=(x>0)的圖象上,點D的坐標(biāo)為(4,3).
(1)求k的值;
(2)將這個菱形沿x軸正方向平移,當(dāng)頂點D落在反比例函數(shù)圖象上時,求菱形平移的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一水果商某次按每千克3.2元購進一批蘋果,銷售過程中有20%的蘋果正常損耗,為避免虧本,該水果商應(yīng)將這批蘋果的售價至少定為每千克_____元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖①是某手機生產(chǎn)廠第一季度三個月產(chǎn)量統(tǒng)計圖,圖②是這三個月的產(chǎn)量與第一季度總產(chǎn)量的比例分布統(tǒng)計圖,統(tǒng)計員在制作圖①、圖②時漏填了部分數(shù)據(jù).
(1)該廠二月份生產(chǎn)的手機產(chǎn)量占第一季度的比例為 %;
(2)求該廠三月份生產(chǎn)手機的產(chǎn)量;
(3)請求出圖②中一月份圓心角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在﹣2,﹣3,4這三個數(shù)中任選2個數(shù)分別作為點P的橫坐標(biāo)和縱坐標(biāo).
(1)可得到的點得個數(shù)為 ;
(2)求過P點的正比例函數(shù)圖象經(jīng)過第二,四象限的概率(用樹形圖或列表法求解);
(3)過點P得正比例函數(shù)中,函數(shù)y隨自變量x的增大而增大的概率為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com