已知:如圖,以等邊三角形ABC一邊AB為直徑的⊙O與邊AC、BC分別交于點D、E,過點D作DF⊥BC,垂足為F
(1)求證:DF為⊙O的切線;
(2)若等邊三角形ABC的邊長為4,求DF的長;
(3)求圖中陰影部分的面積.

【答案】分析:(1)連接DO,要證明DF為⊙O的切線只要證明∠FDP=90°即可;
(2)由已知可得到CD,CF的長,從而利用勾股定理可求得DF的長;
(3)連接OE,求得CF,EF的長,從而利用S直角梯形FDOE-S扇形OED求得陰影部分的面積.
解答:證明:(1)連接DO.
∵△ABC是等邊三角形,
∴∠A=∠C=60°.
∵OA=OD,
∴△OAD是等邊三角形.
∴∠ADO=60°,
∵DF⊥BC,
∴∠CDF=90°-∠C=30°,(2分)
∴∠FDO=180°-∠ADO-∠CDF=90°,
∴DF為⊙O的切線;(3分)

(2)∵△OAD是等邊三角形,
∴AD=AO=AB=2.
∴CD=AC-AD=2.
Rt△CDF中,
∵∠CDF=30°,
∴CF=CD=1.
∴DF=;(5分)

(3)連接OE,由(2)同理可知CE=2.
∴CF=1,
∴EF=1.
∴S直角梯形FDOE=(EF+OD)•DF=,
∴S扇形OED==,
∴S陰影=S直角梯形FDOE-S扇形OED=-.(7分)
點評:此題考查學生對切線的判定及扇形的面積等知識點的掌握情況.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,等邊△ABC的邊長為6,點D、E分別在AB、AC上,且AD=AE=2,直線l過點A,且l∥BC,若點F從點B開始以每秒1個單位長的速度沿射線BC方向運動,設F點運動的時間為t秒,當t>0時,直線DF交l于點G,GE的延長線與BC的延長線交于點H,AB與GH相交于點O.
(1)當t為何值時,AG=AE?
(2)請證明△GFH的面積為定值;
(3)當t為何值時,點F和點C是線段BH的三等分點?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

13、已知:如圖,P是等邊三角形ABC內部一點,且∠APC=117°,∠BPC=130°,
求:以AP、BP、CP為邊的三角形三內角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,點I在x軸上,以I為圓心、r為半徑的半圓I與x軸相交于點A、B,與y軸相精英家教網(wǎng)交于點D,順次連接I、D、B三點可以組成等邊三角形.過A、B兩點的拋物線y=ax2+bx+c的頂點P也在半圓I上.
(1)證明:無論半徑r取何值時,點P都在某一個正比例函數(shù)的圖象上.
(2)已知兩點M(0,-1)、N(1、0),且射線MN與拋物線y=ax2+bx+c有兩個不同的交點,請確定r的取值范圍.
(3)請簡要描述符合本題所有條件的拋物線的特征.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖所示,點C在線段AB上,分別以AC、BC為一邊作為等邊△ACM和等邊△BCN,連接AN、BM.
(1)求證:AN=BM;
(2)設AN、BM相交于點D,求證:∠ADB=120°;
(3)如果A、C、B三點不在同一直線上,那么AN=BM是否仍然成立?如果成立,加以證明;如果不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:數(shù)學教研室 題型:044

  已知:如圖,以ABC的三邊為邊在BC的同一側分別作三個等邊三角形,即ABD、BCEACF

  請回答下列問題:(不要求證明)

  (1)四邊形ADEF是什么四邊形?

  

  (2)ABC滿足什么條件時,四邊形ADEF是矩形.

  

  (3)ABC滿足什么條件時,以A、DE、F為頂點的四邊形不存在.

 

 

查看答案和解析>>

同步練習冊答案