【題目】某建筑工地計劃租用甲、乙兩輛車清理建筑垃圾,已知甲車單獨運完需要15天,乙車單獨運完需要30天.甲車先運了3天,然后甲、乙兩車合作運完剩下的垃圾.

1)甲、乙兩車合作還需要多少天運完垃圾?

2)已知甲車每天的租金比乙車多100元,運完垃圾后建筑工地共需支付租金3950元.則甲、乙車每天的租金分別為多少元?

【答案】(1)甲、乙兩車合作還需要8天運完垃圾;(2)甲車每天租金為250元,乙車每天租金為150元.

【解析】

1)根據(jù)題意首先可以得知甲車效率為每天運送,乙車效率為每天運送,據(jù)此設(shè)甲、乙兩車合作還需要天運完垃圾,然后進一步列出方程求解即可;

2)設(shè)乙車每天租金為元,則甲車每天租金為元,據(jù)此根據(jù)“共需支付租金3950元”列出方程求解即可.

1)設(shè)甲、乙兩車合作還需要天運完垃圾,

根據(jù)題意,得

解得:,

答:甲、乙兩車合作還需要8天運完垃圾.

2)設(shè)乙車每天租金為元,則甲車每天租金為元,

根據(jù)題意,得

解得:

(元),

答:甲車每天租金為250元,乙車每天租金為150元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按要求畫圖:(1)如圖1平面上有五個點,按下列要求畫出圖形.

①連接

②畫直線于點;

③畫出線段的反向延長線;

④請在直線上確定一點,使兩點到點的距離之和最小,并寫出畫圖的依據(jù).

2)有5個大小一樣的正方形制成如圖2所示的拼接圖形(陰影部分),請你在圖中的拼接圖形上再接一個正方形,使新拼接成的圖形經(jīng)過折疊后能成為一個封閉的正方體盒子.(注意:只需添加一個符合要求的正方形,并用陰影表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地圖書館為了滿足群眾多樣化閱讀的需求,決定購買甲、乙兩種品牌的電腦若干組建電子閱覽室.經(jīng)了解,甲、乙兩種品牌的電腦單價分別3100元和4600元.

(1)若購買甲、乙兩種品牌的電腦共50臺,恰好支出200000元,求甲、乙兩種品牌的電腦各購買了多少臺?

(2)若購買甲、乙兩種品牌的電腦共50臺,每種品牌至少購買一臺,且支出不超過160000元,共有幾種購買方案?并說明哪種方案最省錢.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=-3x+3x軸、y軸分別交于點A、B,拋物線y=ax-2)2k經(jīng)過點AB,并與x軸交于另一點C,其頂點為P

(1)求a,k的值;

(2)拋物線的對稱軸上是否存在一點M,使ABM的周長最小,若存在,求出ABM的周長;若不存在,請說明理由;

(3)若以AB為直徑畫圓,與拋物線的對稱軸交于點N,求出點N坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)(觀察思考):

如圖,線段上有兩個點,圖中共有_________條線段;

2)(模型構(gòu)建):

如果線段上有個點(包括線段的兩個端點),則該線段上共有___________條線段;

3)(拓展應(yīng)用):

某班8位同學(xué)參加班上組織的象棋比賽,比賽采用單循環(huán)制(即每兩位同學(xué)之間都要進行一場比賽)那么一共要進行__________場比賽

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(閱讀材料)

我們知道在數(shù)軸上表示的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大,利用此規(guī)律,我們可以求數(shù)軸上兩個點之間的距離,具體方法是:用右邊的數(shù)減去左邊的數(shù)的差就是表示這兩個數(shù)的兩點之間的距離.若點表示的數(shù)是,點表示的數(shù)是,點在點的右邊(即),則點,之間的距離為(即).

例如:若點表示的數(shù)是-6,點表示的數(shù)是-9,則線段

(理解應(yīng)用)

1)已知在數(shù)軸上,點表示的數(shù)是-2020,點表示的數(shù)是2020,求線段的長;

(拓展應(yīng)用)

如圖,數(shù)軸上有三個點,點表示的數(shù)是-2,點表示的數(shù)是3,點表示的數(shù)是

2)當(dāng),三個點中,其中一個點是另外兩個點所連線段的中點時,求的值;

3)在點左側(cè)是否存在一點,使點到點,點的距離和為19?若存在,求出點表示的數(shù):若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為直線上一點,平分,則以下結(jié)論正確的有______.(只填序號)①互為余角;②若,則;③;平分

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點是直線上一點,的平分線.

1)當(dāng)點,在直線的同側(cè),且的內(nèi)部時(如圖1所示 ), 設(shè),求的大。

2)當(dāng)點與點在直線的兩旁(如圖2所示),(1)中的結(jié)論是否仍然成立?請給出你的結(jié)論,并說明理由;

3)將圖2 中的射線繞點順時針旋轉(zhuǎn),得到射線,設(shè),若,則的度數(shù)是 (用含的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛汽車行駛時的耗油量為0.1/千米,如圖是油箱剩余油量(升)關(guān)于加滿油后已行駛的路程(千米)的函數(shù)圖象.

(1)根據(jù)圖象,直接寫出汽車行駛400千米時,油箱內(nèi)的剩余油量,并計算加滿油時油箱的油量;

(2)求關(guān)于的函數(shù)關(guān)系式,并計算該汽車在剩余油量5升時,已行駛的路程.

查看答案和解析>>

同步練習(xí)冊答案