【題目】如圖所示,四邊形ABCD是矩形,把△ACD沿AC折疊到△ACD′,AD′與BC交于點E,若AD=4,DC=3,求BE的長.
【答案】解:∵四邊形ABCD為矩形, ∴AB=DC=3,BC=AD=4,AD∥BC,∠B=90°,
∵△ACD沿AC折疊到△ACD′,AD′與BC交于點E,
∴∠DAC=∠D′AC,
∵AD∥BC,
∴∠DAC=∠ACB,
∴∠D′AC=∠ACB,
∴AE=EC,
設BE=x,則EC=4﹣x,AE=4﹣x,
在Rt△ABE中,∵AB2+BE2=AE2 ,
∴32+x2=(4﹣x)2 , 解得x= ,
即BE的長為
【解析】根據矩形性質得AB=DC=3,BC=AD=4,AD∥BC,∠B=90°,再根據折疊性質得∠DAC=∠D′AC,而∠DAC=∠ACB,則∠D′AC=∠ACB,所以AE=EC, 設BE=x,則EC=4﹣x,AE=4﹣x,然后在Rt△ABE中利用勾股定理可計算出BE.
【考點精析】解答此題的關鍵在于理解翻折變換(折疊問題)的相關知識,掌握折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應邊和角相等.
科目:初中數學 來源: 題型:
【題目】如圖,直線EF,CD相交于點O,OA⊥OB,且OC平分∠AOF.
(1)若∠AOE=40°,求∠BOD的度數;
(2)若∠AOE=α,求∠BOD的度數.(用含α的代數式表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD中,點E、F分別在邊BC、CD上,且AE=EF=FA.下列結論:①△ABE≌△ADF;②CE=CF;③∠AEB=75°;④BE+DF=EF;⑤S△ABE+S△ADF=S△CEF , 其中正確的是①②③⑤(只填寫序號).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖, 拋物線與
交于點A
,過點A作
軸的平行線,分別交兩條拋物線于點B、C.則以下結論:① 無論
取何值,
的值總是正數;②
;③ 當
時,
;④ 當
>
時,0≤
<1;⑤ 2AB=3AC.其中正確結論的編號是______________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,反比例函數的圖象與一次函數
的圖象交于
,
兩點.
(1)求反比例函數與一次函數的解析式;
(2)根據圖象回答:當取何值時,反比例函數的值大于一次函數的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com