【題目】如圖,已知∠MON=30°,點A1,A2,A3,…在射線ON上,點B1,B2,B3,…在射線OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均為等邊三角形,若OA2=4,則△AnBnAn+1的邊長為_____.
【答案】2n.
【解析】
根據(jù)等腰三角形的性質(zhì)以及平行線的性質(zhì)得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=8,A4B4=8B1A2=16,A5B5=16B1A2…進而得出答案.
解:∵△A1B1A2是等邊三角形,
∴A1B1=A2B1,
∵∠MON=30°,
∵OA2=4,
∴OA1=A1B1=2,
∴A2B1=2,
∵△A2B2A3、△A3B3A4是等邊三角形,
∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,
∴A2B2=2B1A2,B3A3=2B2A3,
∴A3B3=4B1A2=8,
A4B4=8B1A2=16,
A5B5=16B1A2=32,
以此類推△AnBnAn+1的邊長為 2n.
故答案為:2n.
科目:初中數(shù)學 來源: 題型:
【題目】模型建立:
(1)如圖1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直線ED經(jīng)過點C,過A作AD⊥ED于D,過B作BE⊥ED于E.
求證:△BEC≌△CDA.
模型應用:
(2)已知直線l1:y=x+4與y軸交與A點,將直線l1繞著A點順時針旋轉(zhuǎn)45°至l2,如圖2,求l2的函數(shù)解析式.
(3)如圖3,矩形ABCO,O為坐標原點,B的坐標為(8,6),A、C分別在坐標軸上,P是線段BC上動點,設PC=m,已知點D在第一象限,且是直線y=2x-6上的一點,若△APD是不以A為直角頂點的等腰Rt△,請直接寫出點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,拋物線的頂點坐標A(1,3),與x軸的一個交點B(4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點,下列結(jié)論:
①2a+b=0;②abc>0;③方程ax2+bx+c=3有兩個相等的實數(shù)根;④拋物線與x軸的另一個交點是(﹣1,0);⑤當1<x<4時,有y2<y1,
其中正確的是( )
A. ①②③ B. ①③④ C. ①③⑤ D. ②④⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個三角形中,如果一個角是另一個角的2倍,我們稱這種三角形為倍角三角形.如圖1,倍角△ABC中,∠A=2∠B,∠A、∠B、∠C的對邊分別記為a,b,c,倍角三角形的三邊a,b,c有什么關系呢?讓我們一起來探索.
(1)我們先從特殊的倍角三角形入手研究.請你結(jié)合圖形填空:
三三角形角形 | 角的已知量 | ||
圖2 | ∠A=2∠B=90° | ||
圖3 | ∠A=2∠B=60° |
(2)如圖4,對于一般的倍角△ABC,若∠CAB=2∠CBA,∠CAB、∠CBA、∠C的對邊分別記為a,b,c,a,b,c,三邊有什么關系呢?請你作出猜測,并結(jié)合圖4給出的輔助線提示加以證明;
(3)請你運用(2)中的結(jié)論解決下列問題:若一個倍角三角形的兩邊長為5,6,求第三邊長.(直接寫出結(jié)論即可)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,,,點在邊上,從點向點移動,點在邊上,從點向點移動,若點,均以的速度同時出發(fā),且當一點移動終點時,另一點也隨之停止,連接,則線段的最小值是( ).
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程有實數(shù)根.
(1)求m的值;
(2)先作的圖象關于x軸的對稱圖形,然后將所作圖形向左平移3個單位長度,再向上平移2個單位長度,寫出變化后圖象的解析式;
(3)在(2)的條件下,當直線y=2x+n(n≥m)與變化后的圖象有公共點時,求的最大值和最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖, 為等腰三角形,頂點 的坐標為 ,底邊 在 軸上.將 繞點 按順時針方向旋轉(zhuǎn)一定角度后得 ,點 的對應點 在 軸上,那么點 的橫坐標是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】大學畢業(yè)生小王響應國家“自主創(chuàng)業(yè)”的號召,利用銀行小額無息貸款開辦了一家飾品店.該店購進一種今年新上市的飾品進行銷售,飾品的進價為每件元,售價為每件元,每月可賣出件.市場調(diào)查反映:調(diào)整價格時,售價每漲元每月要少賣件;售價每下降元每月要多賣件.為了獲得更大的利潤,現(xiàn)將飾品售價調(diào)整為(元/件)(即售價上漲,即售價下降),每月飾品銷量為(件),月利潤為(元).
直接寫出與之間的函數(shù)關系式;
如何確定銷售價格才能使月利潤最大?求最大月利潤;
為了使每月利潤不少于元應如何控制銷售價格?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在矩形ABCD中,點A(1,1),B(3,1),C(3,2),反比例函數(shù)y= (x>0)的圖象經(jīng)過點D,且與AB相交于點E,
(1)求反比例函數(shù)的解析式;
(2)過點C、E作直線,求直線CE的解析式;
(3)如圖2,將矩形ABCD沿直線CE平移,使得點C與點E重合,求線段BD掃過的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com