【題目】摩拜單車公司調(diào)查無錫市民對其產(chǎn)品的了解情況,隨機抽取部分市民進行問卷,結(jié)果分非常了解、比較了解、一般了解不了解四種類型,分別記為、、、.根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計圖.

1)本次問卷共隨機調(diào)查了 名市民,扇形統(tǒng)計圖中 .

2)請根據(jù)數(shù)據(jù)信息補全條形統(tǒng)計圖.

3扇形統(tǒng)計圖中“D類型所對應的圓心角的度數(shù)是 .

4從這次接受調(diào)查的市民中隨機抽查一個,恰好是不了解的概率是 。

【答案】(1)50,m=32;(2)見解析;(3)43.2o;(4)

【解析】整體分析

(1)由類型A對應的人數(shù)和所占的百分比求調(diào)查的人數(shù),計算出類型D所占的百分比;(2)計算出類型B的人數(shù);(3)類型D占調(diào)查人數(shù)的比乘以360°;(4)由概率的定義計算類型D的人數(shù)除以調(diào)查的人數(shù).

:(1)本次問卷共隨機調(diào)查了8÷16%=50名市民;因為×100%=32%,所以m=32.

(2)因為50-8-16-6=20,所以補全的圖形為:

3扇形統(tǒng)計圖中“D類型所對應的圓心角的度數(shù)是.

4從這次接受調(diào)查的市民中隨機抽查一個,恰好是不了解的概率是=.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在8×8方格紙中,△ABC的三個頂點都在小方格的頂點上,按要求畫一個三角形,使它的頂點都在方格的頂點上.請在圖2中畫一個三角形,使它與△ABC相似,且相似比為2:1;請在圖3中畫一個三角形,使它與△ABC相似,且相似比為 :1.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)﹣a2bc+cba2

(2)7ab﹣3a2b2+7+8ab2+3a2b2﹣3﹣7ab

(3)(﹣x+2x2+5)+(4x2﹣3﹣6x)

(4)(2x2+3x)﹣4(x﹣x2+

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/秒的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/秒的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設(shè)點D、E運動的時間是t秒(0<t≤15).過點D作DF⊥BC于點F,連接DE,EF.

(1)求證:AE=DF;

(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應的t值,如果不能,說明理由;

(3)當t為何值時,△DEF為直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點P(2a﹣12,1﹣a)位于第三象限,點Q(x,y)位于第二象限且是由點P向上平移一定單位長度得到的.

(1)若點P的縱坐標為﹣3,試求出a的值;

(2)在(1)題的條件下,試求出符合條件的一個點Q的坐標;

(3)若點P的橫、縱坐標都是整數(shù),試求出a的值以及線段PQ長度的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中, B0,8),D100),一次函數(shù)y=x+的圖象過C16n),與x軸交于A點。

1)求證:四邊形ABCD為平行四邊形;

2)將AOB繞點O順時針旋轉(zhuǎn),旋轉(zhuǎn)得A1OB1,問:能否使以點OA1、DB1為頂點的四邊形是平行四邊形?若能,求點A1的坐標;若不能,請說明理由;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平行四邊形ABCD中,分別以AD、BC為邊向內(nèi)作等邊ADE和等邊BCF,連接BE、DF.求證:四邊形BEDF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD的頂點A、C在雙曲線y1=﹣ 上,B、D在雙曲線y2= 上,k1=2k2(k1>0),AB∥y軸,SABCD=24,則k1=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1是安裝在斜屋面上的熱水器,圖2是安裝該熱水器的側(cè)面示意圖.已知,斜屋面的傾角為25°,長為2.1米的真空管AB與水平線AD的夾角為40°,安裝熱水器的鐵架水平橫管BC長0.2米,求鐵架垂直管CE的長(結(jié)果精確到0.01米).

查看答案和解析>>

同步練習冊答案