【題目】對于實(shí)數(shù)m、n,定義一種運(yùn)算“※”為:m※n=mn+n.
(1)求2※5與2※(﹣5)的值;
(2)如果關(guān)于x的方程x※(a※x)=﹣有兩個(gè)相等的實(shí)數(shù)根,求實(shí)數(shù)a的值.
【答案】(1)15,-15;(2)a=0.
【解析】
(1)根據(jù)新運(yùn)算“※”的運(yùn)算公式進(jìn)行運(yùn)算即可得出結(jié)論;(2)根據(jù)新運(yùn)算“※”的運(yùn)算公式將方程進(jìn)行變形,再根據(jù)方程有兩個(gè)相等的實(shí)數(shù)根結(jié)合根的判別式,即可得出關(guān)于a的一元一次不等式及一元二次方程,解之即可得出結(jié)論.
(1)2※5=2×5+5=15;
2※(﹣5)=2×(﹣5)+(﹣5)=﹣15.
(2)x※(a※x)=x※[(a+1)x]=x(x+1)(a+1)=﹣,
整理得:4(a+1)x2+4(a+1)x+1=0.
∵關(guān)于x的方程x※(a※x)=﹣有兩個(gè)相等的實(shí)數(shù)根,
∴ ,
∴a=0.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A、B、C,已知A(﹣1,0),C(0,3).
(1)求拋物線的解析式;
(2)如圖1,P為線段BC上一點(diǎn),過點(diǎn)P作y軸平行線,交拋物線于點(diǎn)D,當(dāng)△BDC的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)如圖2,拋物線頂點(diǎn)為E,EF⊥x軸于F點(diǎn),M(m,0)是x軸上一動(dòng)點(diǎn),N是線段EF上一點(diǎn),若∠MNC=90°,請指出實(shí)數(shù)m的變化范圍,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某高樓頂部有一信號發(fā)射塔,在矩形建筑物ABCD的A、C兩點(diǎn)測得該塔頂端F的仰角分別為∠α=48°和∠β=65°,矩形建筑物寬度AD=20m,高度CD=30m,則信號發(fā)射塔頂端到地面的高度FG為__米(結(jié)果精確到1m).
參考數(shù)據(jù):sin48°=0.7,cos48°=0.7,tan48°=1.1,cos65°=0.4,tan65°=2.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程m x2-(m+2)x+2=0(m≠0).
(1)求證:無論m為何值時(shí),這個(gè)方程總有兩個(gè)實(shí)數(shù)根;
(2)若方程的兩個(gè)實(shí)數(shù)根都是整數(shù),求正整數(shù)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A(1,0)、C(﹣2,3)兩點(diǎn),與y軸交于點(diǎn)N,其頂點(diǎn)為D.
(1)求拋物線及直線AC的函數(shù)關(guān)系式;
(2)若P是拋物線上位于直線AC上方的一個(gè)動(dòng)點(diǎn),求△APC的面積的最大值及此時(shí)點(diǎn)P的坐標(biāo);
(3)在對稱軸上是否存在一點(diǎn)M,使△ANM的周長最。舸嬖,請求出M點(diǎn)的坐標(biāo)和△ANM周長的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,河的兩岸l1與l2相互平行,A、B是l1上的兩點(diǎn),C、D是l2上的兩點(diǎn),某人在點(diǎn)A處測得∠CAB=90°,∠DAB=30°,再沿AB方向前進(jìn)20米到達(dá)點(diǎn)E(點(diǎn)E在線段AB上),測得∠DEB=60°,求C、D兩點(diǎn)間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°, BC∥x軸,拋物線y=ax2-2ax+3經(jīng)過△ABC的三個(gè)頂點(diǎn),并且與x軸交于點(diǎn)D、E,點(diǎn)A為拋物線的頂點(diǎn).
(1)求拋物線的解析式;
(2)連接CD,在拋物線的對稱軸上是否存在一點(diǎn)P使△PCD為直角三角形,若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】商場某種新商品每件進(jìn)價(jià)是120元,在試銷期間發(fā)現(xiàn),當(dāng)每件商品售價(jià)為130元時(shí),每天可銷售70件,當(dāng)每件商品售價(jià)高于130元時(shí),每漲價(jià)1元,日銷售量就減少1件.據(jù)此規(guī)律,請回答:
(1)當(dāng)每件商品售價(jià)定為170元時(shí),每天可銷售多少件商品?商場獲得的日盈利是多少?
(2)在上述條件不變,商品銷售正常的情況下,每件商品的銷售價(jià)定為多少元時(shí),商場日盈利可達(dá)到1600元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連結(jié)AO并延長交⊙O于點(diǎn)E,連結(jié)EC.若AB=8,CD=2,則EC的長為( )
A. 2B. 8C. D. 2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com