已知:如圖,平面直角坐標(biāo)系中,四邊形OABC是直角梯形,AB∥OC,OA=5,AB=10,OC=12,拋物線y=ax2+bx經(jīng)過點(diǎn)B、C.
(1)求拋物線的函數(shù)表達(dá)式;
(2)一動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AC以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)C運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿CO以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)O運(yùn)動(dòng),當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)C時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t為何值時(shí),△PQC是直角三角形?
(3)點(diǎn)M在拋物線上,點(diǎn)N在拋物線對(duì)稱軸上,是否存在這樣的點(diǎn)M與點(diǎn)N,使以M、N、A、C為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)M與點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】分析:(1)先寫出點(diǎn)B、C的坐標(biāo),然后利用待定系數(shù)法求二次函數(shù)解析式即可;
(2)利用勾股定理列式求出AC的長(zhǎng),再求出點(diǎn)P到達(dá)點(diǎn)C的時(shí)間,然后表示出CP、CQ的長(zhǎng),然后分∠PQC=90°和∠CPQ=90°兩種情況,利用∠ACO的余弦列式其解即可;
(3)先根據(jù)拋物線解析式求出對(duì)稱軸解析式,然后分①AC是平行四邊形的邊時(shí),分點(diǎn)M在對(duì)稱軸左邊與右邊兩種情況求出點(diǎn)M的橫坐標(biāo),然后代入拋物線解析式計(jì)算求出縱坐標(biāo),從而求出點(diǎn)M的坐標(biāo),再根據(jù)點(diǎn)A、C的縱坐標(biāo)的差距求出點(diǎn)N的縱坐標(biāo),然后寫出點(diǎn)N的坐標(biāo);②AC是對(duì)角線時(shí),根據(jù)平行四邊形的對(duì)角線互相平分可知點(diǎn)M為拋物線的頂點(diǎn)坐標(biāo),再根據(jù)中點(diǎn)求出點(diǎn)N即可.
解答:解:(1)∵OA=5,AB=10,OC=12,
∴點(diǎn)B(10,5),C(12,0),

解得,
∴拋物線的函數(shù)表達(dá)式為y=-x2+3x;

(2)根據(jù)勾股定理,AC===13,
∵點(diǎn)P沿AC以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)C運(yùn)動(dòng),點(diǎn)Q沿CO以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)O運(yùn)動(dòng),
∴點(diǎn)P運(yùn)動(dòng)的時(shí)間為:13÷2=6.5秒,
CP=AC-AP=13-2t,CQ=t,
∵∠ACO≠90°,
∴分∠PQC=90°和∠CPQ=90°兩種情況討論:
①∠PQC=90°時(shí),cos∠ACO==,
=,
解得t=
②∠CPQ=90°時(shí),cos∠ACO==
=,
解得t=
綜上所述,t為秒或秒時(shí),△PQC是直角三角形;

(3)拋物線對(duì)稱軸為直線x=-=-=6,
①AC是平行四邊形的邊時(shí),(i)若點(diǎn)M在對(duì)稱軸左邊,
∵OC=12,
∴點(diǎn)M的橫坐標(biāo)為:6-12=-6,
代入拋物線解析式得,y=-×(-6)2+3×(-6)=-27,
此時(shí)點(diǎn)M的坐標(biāo)為(-6,-27),
∵OA=5,
∴點(diǎn)N的縱坐標(biāo)為:-27-5=-32,
∴點(diǎn)N的坐標(biāo)為(6,-32);
(ii)若點(diǎn)M在對(duì)稱軸右邊,∵OC=12,
∴點(diǎn)M的橫坐標(biāo)為:6+12=18,
代入拋物線解析式得,y=-×182+3×18=-27,
此時(shí)點(diǎn)M的坐標(biāo)為(18,-27),
∵OA=5,
∴點(diǎn)N的縱坐標(biāo)為:-27+5=-22,
∴點(diǎn)N的坐標(biāo)為(6,-22);
②AC是對(duì)角線時(shí),∵點(diǎn)P是AC的中點(diǎn),點(diǎn)N在對(duì)稱軸上,
∴點(diǎn)M也在拋物線對(duì)稱軸上,
∴點(diǎn)M為拋物線的頂點(diǎn),
∵y=-x2+3x=-(x-12x+36)2+9=-(x-6)2+9,
∴M(6,9),
∵OA=5,OC=12,點(diǎn)P在對(duì)稱軸上,
∴點(diǎn)P的坐標(biāo)為(6,),
∴點(diǎn)N的縱坐標(biāo)為:2×-9=-4,
∴點(diǎn)N(6,-4);
綜上所述,M(-6,-27)、N(6,-32)或M(18,-27)、N(6,-22)或M(6,9)、N(6,-4)時(shí),以M、N、A、C為頂點(diǎn)的四邊形是平行四邊形.
點(diǎn)評(píng):本題是二次函數(shù)綜合題型,主要考查了待定系數(shù)法求二次函數(shù)解析式,解直角三角形,平行四邊形的性質(zhì),(2)(3)小題中,都用到了分類討論的數(shù)學(xué)思想,難點(diǎn)在于考慮問題要全面,做到不重不漏.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,平面直角坐標(biāo)系中,半圓的直徑AB在x軸上,圓心為D.半圓交y軸于點(diǎn)C,AC=2
5
,精英家教網(wǎng)BC=4
5

(1)證明:△AOC∽△ACB;
(2)求以AO、BO兩線段長(zhǎng)為根的一元二次方程;
(3)求圖象經(jīng)過A、B、C三點(diǎn)的二次函數(shù)的表達(dá)式;
(4)設(shè)此拋物線的頂點(diǎn)為E,連接EC,試判斷直線EC與⊙O的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖:平面直角坐標(biāo)系中,拋物線y=-x2+2x+c的圖象與x軸分別交于點(diǎn)A精英家教網(wǎng)、B,其中點(diǎn)B在點(diǎn)A的右側(cè),拋物線圖象與y軸交于點(diǎn)C,且經(jīng)過點(diǎn)D(2,3).
(1)求c值;
(2)求直線BC的解析式;
(3)動(dòng)點(diǎn)M在線段CB上由點(diǎn)C向終點(diǎn)B運(yùn)動(dòng)(點(diǎn)M不與點(diǎn)C、B重合),以O(shè)M為邊在y軸右側(cè)做正方形OMNF.設(shè)M點(diǎn)運(yùn)動(dòng)速度為
2
個(gè)單位/秒,運(yùn)動(dòng)時(shí)間為t.求以O(shè)、M、N、B、F為頂點(diǎn)的五邊形面積與t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖在平面直角坐標(biāo)系xOy中,直線AB分別與x,y軸交于點(diǎn)B、A,與反比例函數(shù)的圖象分別交于點(diǎn)C、D,CE⊥x軸于點(diǎn)E,OA=3,OB=6,OE=2.
(1)求直線AB的解析式;
(2)求該反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,平面直角坐標(biāo)系xOy中,直線y=kx+b(k≠0)與直線y=mx(m≠0)交于點(diǎn)A(-2,4).
(1)求直線y=mx(m≠0)的解析式;
(2)若直線y=kx+b(k≠0)與另一條直線y=2x交于點(diǎn)B,且點(diǎn)B的橫坐標(biāo)為-4,求△ABO的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,平面直角坐標(biāo)系xOy中,正方形ABCD的邊長(zhǎng)為4,它的頂點(diǎn)A在x軸的正半軸上運(yùn)動(dòng),頂點(diǎn)D在y軸的正半軸上運(yùn)動(dòng)(點(diǎn)A,D都不與原點(diǎn)重合),頂點(diǎn)B,C都在第一象限,且對(duì)角線AC,BD相交于點(diǎn)P,連接OP.
(1)當(dāng)OA=OD時(shí),點(diǎn)D的坐標(biāo)為
(0,2
2
(0,2
2
,∠POA=
45
45
°;
(2)當(dāng)OA<OD時(shí),求證:OP平分∠DOA;
(3)設(shè)點(diǎn)P到y(tǒng)軸的距離為d,則在點(diǎn)A,D運(yùn)動(dòng)的過程中,d的取值范圍是什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案