【題目】在△ABC中,AB=6,AC=BC=5,將△ABC繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn),得到△ADE,旋轉(zhuǎn)角為α(0°<α<180°),點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)D,點(diǎn)C的對(duì)應(yīng)點(diǎn)為點(diǎn)E,連接BD,BE.
(1)如圖,當(dāng)α=60°時(shí),延長(zhǎng)BE交AD于點(diǎn)F.
①求證:△ABD是等邊三角形;
②求證:BF⊥AD,AF=DF;
③請(qǐng)直接寫(xiě)出BE的長(zhǎng);
(2)在旋轉(zhuǎn)過(guò)程中,過(guò)點(diǎn)D作DG垂直于直線(xiàn)AB,垂足為點(diǎn)G,連接CE,當(dāng)∠DAG=∠ACB,且線(xiàn)段DG與線(xiàn)段AE無(wú)公共點(diǎn)時(shí),請(qǐng)直接寫(xiě)出BE+CE的值.
【答案】(1)①②詳見(jiàn)解析;③3﹣4;(2)13.
【解析】試題分析:(1)①由旋轉(zhuǎn)性質(zhì)知AB=AD,∠BAD=60°即可得證;②由BA=BD、EA=ED根據(jù)中垂線(xiàn)性質(zhì)即可得證;③分別求出BF、EF的長(zhǎng)即可得;(2)由∠ACB+∠BAC+∠ABC=180°、∠DAG+∠DAE+∠BAE=180°、∠DAG=∠ACB、∠DAE=∠BAC得∠BAE=∠BAC且AE=AC,根據(jù)三線(xiàn)合一可得CE⊥AB、AC=5、AH=3,繼而知CE=2CH=8、BE=5,即可得答案.
試題解析:(1)①∵△ABC繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn)60°得到△ADE,
∴AB=AD,∠BAD=60°,
∴△ABD是等邊三角形;
②由①得△ABD是等邊三角形,
∴AB=BD,
∵△ABC繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn)60°得到△ADE,
∴AC=AE,BC=DE,
又∵AC=BC,
∴EA=ED,
∴點(diǎn)B、E在AD的中垂線(xiàn)上,
∴BE是AD的中垂線(xiàn),
∵點(diǎn)F在BE的延長(zhǎng)線(xiàn)上,
∴BF⊥AD, AF=DF;
③由②知BF⊥AD,AF=DF,
∴AF=DF=3,
∵AE=AC=5,
∴EF=4,
∵在等邊三角形ABD中,BF=ABsin∠BAF=6×=3,
∴BE=BF﹣EF=3﹣4;
(2)如圖所示,
∵∠DAG=∠ACB,∠DAE=∠BAC,
∴∠ACB+∠BAC+∠ABC=∠DAG+∠DAE+∠ABC=180°,
又∵∠DAG+∠DAE+∠BAE=180°,
∴∠BAE=∠ABC,
∵AC=BC=AE,
∴∠BAC=∠ABC,
∴∠BAE=∠BAC,
∴AB⊥CE,且CH=HE=CE,
∵AC=BC,
∴AH=BH=AB=3,
則CE=2CH=8,BE=5,
∴BE+CE=13.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)乘積(﹣3)×(﹣3)×(﹣3)×(﹣3)記法正確的是( )
A. ﹣34B. (﹣3)4C. ﹣(+3)4D. ﹣(﹣3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=ax2+bx+c經(jīng)過(guò)點(diǎn)A(﹣3,0),B(1,0),C(0,﹣3).
(1)求拋物線(xiàn)的解析式;
(2)若點(diǎn)P為第三象限內(nèi)拋物線(xiàn)上的一點(diǎn),設(shè)△PAC的面積為S,求S的最大值;
(3)設(shè)拋物線(xiàn)的頂點(diǎn)為D,DE⊥x軸于點(diǎn)E,在y軸上是否存在點(diǎn)M,使得△ADM是直角三角形?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+px-3=0的一個(gè)根為-3,則它的另一根為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】棗莊樂(lè)園設(shè)置了一個(gè)秋千場(chǎng)所,如圖所,秋千拉繩OB的長(zhǎng)為3m,靜止時(shí),踏板到地面距離BD的長(zhǎng)為0.6m(踏板厚度忽略不計(jì)).為安全起見(jiàn),樂(lè)園管理處規(guī)定:兒童的“安全高度”為hm,成人的“安全高度”為2m(計(jì)算結(jié)果精確到0.1m)
(1)當(dāng)擺繩OA與OB成45°夾角時(shí),恰為兒童的安全高度,求h的長(zhǎng);
(2)某成人在玩秋千時(shí),擺繩OC與OB的最大夾角為55°,問(wèn)此人是否安全?(參考數(shù)據(jù):≈1.41,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖山坡上有一根旗桿AB,旗桿底部B點(diǎn)到山腳C點(diǎn)的距離BC為米,斜坡BC的坡度i=1: .小明在山腳的平地F處測(cè)量旗桿的高,點(diǎn)C到測(cè)角儀EF的水平距離CF=1米,從E處測(cè)得旗桿頂部A的仰角為45°,旗桿底部B的仰角為20°.
(1)求坡角∠BCD;
(2)求旗桿AB的高度.
(參考數(shù)值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的兩邊分別在x軸和y軸上,OA=10cm,OC=6cm.F是線(xiàn)段OA上的動(dòng)點(diǎn),從點(diǎn)O出發(fā),以1cm/s的速度沿OA方向作勻速運(yùn)動(dòng),點(diǎn)Q在線(xiàn)段AB上.已知A,Q兩點(diǎn)間的距離是O,F(xiàn)兩點(diǎn)間距離的a倍.若用(a,t)表示經(jīng)過(guò)時(shí)間t(s)時(shí),△OCF,△FAQ,△CBQ中有兩個(gè)三角形全等.請(qǐng)寫(xiě)出(a,t)的所有可能情況 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用四舍五入法對(duì)0.02015(精確到千分位)取近似數(shù)是( )
A.0.02
B.0.020
C.0.0201
D.0.0202
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下列命題中,正確的是( 。
A.弦是直徑
B.長(zhǎng)度相等的兩條弧是等弧
C.三點(diǎn)確定一個(gè)圓
D.三角形的外心不一定在三角形的外部
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com