【題目】在△ABC中,AB=6,AC=BC=5,將△ABC繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn),得到△ADE,旋轉(zhuǎn)角為α(0°<α<180°),點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)D,點(diǎn)C的對(duì)應(yīng)點(diǎn)為點(diǎn)E,連接BD,BE.

(1)如圖,當(dāng)α=60°時(shí),延長(zhǎng)BE交AD于點(diǎn)F.

①求證:△ABD是等邊三角形;

②求證:BF⊥AD,AF=DF;

③請(qǐng)直接寫(xiě)出BE的長(zhǎng);

(2)在旋轉(zhuǎn)過(guò)程中,過(guò)點(diǎn)D作DG垂直于直線(xiàn)AB,垂足為點(diǎn)G,連接CE,當(dāng)∠DAG=∠ACB,且線(xiàn)段DG與線(xiàn)段AE無(wú)公共點(diǎn)時(shí),請(qǐng)直接寫(xiě)出BE+CE的值.

【答案】1①②詳見(jiàn)解析;③3﹣4;(213

【解析】試題分析:(1由旋轉(zhuǎn)性質(zhì)知AB=AD,∠BAD=60°即可得證;BA=BDEA=ED根據(jù)中垂線(xiàn)性質(zhì)即可得證;分別求出BF、EF的長(zhǎng)即可得;(2)由∠ACB+∠BAC+∠ABC=180°、∠DAG+∠DAE+∠BAE=180°、∠DAG=∠ACB、∠DAE=∠BAC∠BAE=∠BACAE=AC,根據(jù)三線(xiàn)合一可得CE⊥AB、AC=5、AH=3,繼而知CE=2CH=8、BE=5,即可得答案.

試題解析:(1①∵△ABC繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn)60°得到△ADE,

∴AB=AD,∠BAD=60°

∴△ABD是等邊三角形;

△ABD是等邊三角形,

∴AB=BD,

∵△ABC繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn)60°得到△ADE,

∴AC=AE,BC=DE

∵AC=BC,

∴EA=ED,

點(diǎn)BEAD的中垂線(xiàn)上,

∴BEAD的中垂線(xiàn),

點(diǎn)FBE的延長(zhǎng)線(xiàn)上,

∴BF⊥AD, AF=DF

BF⊥AD,AF=DF,

∴AF=DF=3,

∵AE=AC=5,

∴EF=4,

在等邊三角形ABD中,BF=ABsin∠BAF=6×=3,

∴BE=BF﹣EF=3﹣4

2)如圖所示,

∵∠DAG=∠ACB∠DAE=∠BAC,

∴∠ACB+∠BAC+∠ABC=∠DAG+∠DAE+∠ABC=180°,

∵∠DAG+∠DAE+∠BAE=180°

∴∠BAE=∠ABC,

∵AC=BC=AE,

∴∠BAC=∠ABC,

∴∠BAE=∠BAC

∴AB⊥CE,且CH=HE=CE,

∵AC=BC,

∴AH=BH=AB=3,

CE=2CH=8,BE=5,

∴BE+CE=13

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)乘積(3)×(3)×(3)×(3)記法正確的是( )

A. 34B. (3)4C. (+3)4D. (3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)y=ax2+bx+c經(jīng)過(guò)點(diǎn)A(﹣3,0),B(1,0),C(0,﹣3).

(1)求拋物線(xiàn)的解析式;

(2)若點(diǎn)P為第三象限內(nèi)拋物線(xiàn)上的一點(diǎn),設(shè)△PAC的面積為S,求S的最大值;

(3)設(shè)拋物線(xiàn)的頂點(diǎn)為D,DEx軸于點(diǎn)E,在y軸上是否存在點(diǎn)M,使得△ADM是直角三角形?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+px-3=0的一個(gè)根為-3,則它的另一根為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】棗莊樂(lè)園設(shè)置了一個(gè)秋千場(chǎng)所,如圖所,秋千拉繩OB的長(zhǎng)為3m,靜止時(shí),踏板到地面距離BD的長(zhǎng)為0.6m(踏板厚度忽略不計(jì)).為安全起見(jiàn),樂(lè)園管理處規(guī)定:兒童的安全高度hm,成人的安全高度2m(計(jì)算結(jié)果精確到0.1m

1)當(dāng)擺繩OAOB45°夾角時(shí),恰為兒童的安全高度,求h的長(zhǎng);

2)某成人在玩秋千時(shí),擺繩OCOB的最大夾角為55°,問(wèn)此人是否安全?(參考數(shù)據(jù):≈1.41,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖山坡上有一根旗桿AB,旗桿底部B點(diǎn)到山腳C點(diǎn)的距離BC米,斜坡BC的坡度i=1 .小明在山腳的平地F處測(cè)量旗桿的高,點(diǎn)C到測(cè)角儀EF的水平距離CF=1米,從E處測(cè)得旗桿頂部A的仰角為45°,旗桿底部B的仰角為20°

1)求坡角∠BCD;

2)求旗桿AB的高度.

(參考數(shù)值:sin20°≈0.34cos20°≈0.94,tan20°≈0.36

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的兩邊分別在x軸和y軸上,OA=10cm,OC=6cm.F是線(xiàn)段OA上的動(dòng)點(diǎn),從點(diǎn)O出發(fā),以1cm/s的速度沿OA方向作勻速運(yùn)動(dòng),點(diǎn)Q在線(xiàn)段AB上.已知A,Q兩點(diǎn)間的距離是O,F(xiàn)兩點(diǎn)間距離的a倍.若用(a,t)表示經(jīng)過(guò)時(shí)間t(s)時(shí),△OCF,△FAQ,△CBQ中有兩個(gè)三角形全等.請(qǐng)寫(xiě)出(a,t)的所有可能情況

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用四舍五入法對(duì)0.02015(精確到千分位)取近似數(shù)是(
A.0.02
B.0.020
C.0.0201
D.0.0202

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在下列命題中,正確的是( 。

A.弦是直徑

B.長(zhǎng)度相等的兩條弧是等弧

C.三點(diǎn)確定一個(gè)圓

D.三角形的外心不一定在三角形的外部

查看答案和解析>>

同步練習(xí)冊(cè)答案