【題目】10分)一塊材料的形狀是銳角三角形ABC,邊BC=120mm,高AD=80mm,把它加工成正方形零件如圖1,使正方形的一邊在BC上,其余兩個頂點(diǎn)分別在ABAC上.

1)求證:△AEF∽△ABC;

2)求這個正方形零件的邊長;

3)如果把它加工成矩形零件如圖2,問這個矩形的最大面積是多少?

【答案】1)證明見試題解析;(248;(32400

【解析】

試題(1)根據(jù)矩形的對邊平行得到BC∥EF,利用平行于三角形的一邊的直線截其他兩邊或其他兩邊的延長線,得到的三角形與原三角形相似判定即可.

2)根據(jù)正方形邊的平行關(guān)系,得出對應(yīng)的相似三角形,即△AEF∽△ABC△BFG∽△BAD,從而得出邊長之比,得到++1,進(jìn)而求出正方形的邊長;

3)分別討論長方形的長和寬在BC上的情況,再根據(jù)相應(yīng)得關(guān)系式EF BC +EG

試題解析

1四邊形EGFH為矩形,

∴BC∥EF,

∴△AEF∽△ABC;

2)設(shè)正方形零件的邊長為x,

在正方形EFGH中,EF∥BC∴△AEF∽△ABC∴,

解得:x=48,

即:正方形零件的邊長為48;

3)設(shè)長方形的長為x,寬為y,

當(dāng)長方形的長在BC時,,

,

當(dāng)x=60時,

長方形的面積最大為2400

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】草莓是云南多地盛產(chǎn)的一種水果,今年某水果銷售店在草莓銷售旺季,試銷售成本為每千克元的草莓,規(guī)定試銷期間銷售單價不低于成本單價,也不高于每千克元,經(jīng)試銷發(fā)現(xiàn),銷售量(千克)與銷售單價(元)符合一次函數(shù)關(guān)系,如圖是的函數(shù)關(guān)系圖象

的函數(shù)解析式(也稱關(guān)系式);

設(shè)該水果銷售店試銷草莓獲得的利潤為元,求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:AB是⊙O的直徑,點(diǎn)C在⊙O上,CD是⊙O的切線,ADCD于點(diǎn)D.EAB延長線上一點(diǎn),CE交⊙O于點(diǎn)F,連結(jié)OC,AC.

(1)求證AC平分∠DAO

(2)若∠DAO=105°,E=30°.①求∠OCE的度數(shù).②若⊙O的半徑為,求線段EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在平面直角坐標(biāo)系中,已知的三個頂點(diǎn)的坐標(biāo)分別為,,.

1)將向上平移個單位長度,再向左平移個單位長度,得到,請畫出(點(diǎn),,的對應(yīng)點(diǎn)分別為,,

2)請畫出與關(guān)于軸對稱的(點(diǎn),,的對應(yīng)點(diǎn)分別為,,

3)請寫出,的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知DEBC,AO,DF交于點(diǎn)C.EAB=BCF.

(1)求證:ABDF;

(2)求證:OB2=OEOF;

(3)連接OD,若∠OBC=ODC,求證:四邊形ABCD為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為8的正方形ABCD中,點(diǎn)O為AD上一動點(diǎn)4<OA<8,以O(shè)為圓心,OA的長為半徑的圓交邊CD于點(diǎn)M,連接OM,過點(diǎn)M作O的切線交邊BC于N.

1圖中是否存在與ODM相似的三角形,若存在,請找出并給予證明;

2設(shè)DM=x,OA=R,求R關(guān)于x的函數(shù)關(guān)系式;

3在動點(diǎn)O逐漸向點(diǎn)D運(yùn)動OA逐漸增大的過程中,CMN的周長如何變化?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班甲、乙、丙三位同學(xué)進(jìn)行了一次用正方形紙片折疊探究相關(guān)數(shù)學(xué)問題的課題學(xué)習(xí)活動.

活動情境:

如圖2,將邊長為8cm的正方形紙片ABCD沿EG折疊(折痕EG分別與ABDC交于點(diǎn)E、G),使點(diǎn)B落在AD邊上的點(diǎn) F處,FNDC交于點(diǎn)M處,連接BFEG交于點(diǎn)P

所得結(jié)論:

當(dāng)點(diǎn)FAD的中點(diǎn)重合時:(如圖1)甲、乙、丙三位同學(xué)各得到如下一個正確結(jié)論(或結(jié)果):

甲:△AEF的邊AE=____cm,EF=____cm;

乙:△FDM的周長為16 cm;

丙:EG=BF.

你的任務(wù):

1】填充甲同學(xué)所得結(jié)果中的數(shù)據(jù);

2】寫出在乙同學(xué)所得結(jié)果的求解過程;

3】當(dāng)點(diǎn)FAD邊上除點(diǎn)A、D外的任何一處(如圖2)時:

試問乙同學(xué)的結(jié)果是否發(fā)生變化?請證明你的結(jié)論;

丙同學(xué)的結(jié)論還成立嗎?若不成立,請說明理由,若你認(rèn)為成立,先證明EG=BF,再求出SS為四邊形AEGD的面積)與xAF=x)的函數(shù)關(guān)系式,并問當(dāng)x為何值時,S最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A的坐標(biāo)為(15,0),點(diǎn)B的坐標(biāo)為(6,12),點(diǎn)C的坐標(biāo)為(0,6), 直線ABy軸于點(diǎn)D, 動點(diǎn)P從點(diǎn)C出發(fā)沿著y軸正方向以每秒2個單位的速度運(yùn)動, 同時,動點(diǎn)Q從點(diǎn)A出發(fā)沿著射線AB以每秒a個單位的速度運(yùn)動設(shè)運(yùn)動時間為t秒,

1)求直線AB的解析式和CD的長.

2)當(dāng)△PQD與△BDC全等時,a的值.

3)記點(diǎn)P關(guān)于直線BC的對稱點(diǎn)為,連結(jié)當(dāng)t=3,, 求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E是正方形ABCDAB的中點(diǎn),連接CE過點(diǎn)BBHCEF,ACG,ADH.下列說法 ;②點(diǎn)FGB的中點(diǎn) ; 其中正確的結(jié)論的序號是_____________

查看答案和解析>>

同步練習(xí)冊答案