【題目】在世界經(jīng)濟(jì)的影響下,國(guó)家采取擴(kuò)大內(nèi)需的政策,基建投資成為拉動(dòng)內(nèi)需最強(qiáng)有力的引擎,金強(qiáng)公司中標(biāo)一項(xiàng)工程,在甲、乙兩地施工,其中甲地需推土機(jī)30臺(tái),乙地需推土機(jī)26臺(tái),公司在A、B兩地分別庫(kù)存推土機(jī)32臺(tái)和24臺(tái),現(xiàn)從A地運(yùn)一臺(tái)到甲、乙兩地的費(fèi)用分別是400元和300元.從B地運(yùn)一臺(tái)到甲、乙兩地的費(fèi)用分別為200元和500元,設(shè)從A地運(yùn)往甲地x臺(tái)推土機(jī),運(yùn)這批推土機(jī)的總費(fèi)用為y元.
(1)根據(jù)題意,可將庫(kù)存地和施工地之間推土機(jī)的運(yùn)輸數(shù)量列表如下:
甲地(臺(tái)) | 乙地(臺(tái)) | 合計(jì) | |
A地 | x | A地庫(kù)存:32 (臺(tái)) | |
B地 | B地庫(kù)存:24 (臺(tái)) | ||
合計(jì) | 甲地需求:30 (臺(tái)) | 乙地需求:26 (臺(tái)) | 總計(jì):56 (臺(tái)) |
(2)求y與x的函數(shù)關(guān)系式;
(3)當(dāng)x取何值時(shí),能使運(yùn)送這批推土機(jī)的總費(fèi)用最少?
【答案】(1)見(jiàn)解析;(2)y=400x+12600;(3)當(dāng)x=6時(shí),總費(fèi)用最小
【解析】
(1)設(shè)從A地運(yùn)往甲地x臺(tái),從A地運(yùn)往乙地的推土機(jī)(32x)臺(tái),從B地運(yùn)往甲地的推土機(jī)(30x),運(yùn)往乙地的推土機(jī)(x6)臺(tái),
(2)根據(jù)現(xiàn)從A地運(yùn)一臺(tái)到甲、乙兩地的費(fèi)用分別是400元和300元.從B地運(yùn)一臺(tái)到甲、乙兩地的費(fèi)用分別為200元和500元,可求出運(yùn)這批推土機(jī)的總費(fèi)用.
(2)根據(jù)函數(shù)的性質(zhì)可判斷費(fèi)用何時(shí)最少.
解:(1) 根據(jù)題意,可將庫(kù)存地和施工地之間推土機(jī)的運(yùn)輸數(shù)量列表如下:
甲地 | 乙地 | 合計(jì) | |
A地 | x (臺(tái)) | 32-x (臺(tái)) | A地庫(kù)存:32 (臺(tái)) |
B地 | 30-x (臺(tái)) | 26-(32-x)=24-(30-x)=x-6 (臺(tái)) | B地庫(kù)存:24 (臺(tái)) |
合計(jì) | 甲地需求:30 (臺(tái)) | 乙地需求:26 (臺(tái)) | 總計(jì):56 (臺(tái)) |
(2)從A地往甲地運(yùn)推土機(jī)的費(fèi)用為:400x,
從A地往乙地運(yùn)推土機(jī)的費(fèi)用為:300(32-x),
從B地往甲地運(yùn)推土機(jī)的費(fèi)用為:200(30-x),
從B地往乙地運(yùn)推土機(jī)的費(fèi)用為:500[26-(32-x)].
故運(yùn)甲、乙兩地所需的這批推土機(jī)的總費(fèi)用y可以表示為:
y=400x+300(32-x)+200(30-x)+500[26-(32-x)]=400x+12600,
即y=400x+12600.
(2) 由于各地之間的運(yùn)輸數(shù)量均與x的取值有關(guān). 從實(shí)際情況來(lái)看,x的取值必須保證各地之間的運(yùn)輸數(shù)量均為非負(fù)數(shù). 因此,x的取值必須滿足:
,
解此不等式組,得
6≤x≤30.
由運(yùn)送這批推土機(jī)的總費(fèi)用y和從A地運(yùn)往甲地的推土機(jī)的數(shù)量x的關(guān)系y=400x+12600可知,y與x滿足一次函數(shù)關(guān)系,且y隨x的增大而增大. 故要使總費(fèi)用y最小,則x應(yīng)取最小值.
又因?yàn)?/span>x的取值范圍為:6≤x≤30,所以當(dāng)x=6時(shí),總費(fèi)用最小.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在7×7網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都為1.
(1)若點(diǎn)A(1,3),C(2,1), ①建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系;②點(diǎn)B的坐標(biāo)為( , );
(2)判斷△ABC的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,△ABC為等腰直角三角形, △ABD為等邊三角形,連接CD.
(1)求∠ACD的度數(shù);
(2)如圖①,作∠BAC的平分線交CD于點(diǎn)E,求證:DE=AE+CE;
(3)如圖②,在(2)的條件下,M為線段BC右側(cè)一點(diǎn),滿足∠CMB=60°,求證:ME平分∠CMB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有A、B兩個(gè)港口,水由A流向B,水流的速度是4千米/小時(shí),甲、乙兩船同時(shí)由A順流駛向B,各自不停地在A、B之間往返航行,甲在靜水中的速度是28千米/小時(shí),乙在靜水中的速度是20千米/小時(shí).
設(shè)甲行駛的時(shí)間為t小時(shí),甲船距B港口的距離為S1千米,乙船距B港口的距離為S2千米,如圖為S1(千米)和t(小時(shí))函數(shù)關(guān)系的部分圖象.
(1)A、B兩港口距離是_____千米.
(2)在圖中畫(huà)出乙船從出發(fā)到第一次返回A港口這段時(shí)間內(nèi),S2(千米)和t(小時(shí))的函數(shù)關(guān)系的圖象.
(3)求甲、乙兩船第二次(不算開(kāi)始時(shí)甲、乙在A處的那一次)相遇點(diǎn)M位于A、B港口的什么位置?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】滴滴打車為市民的出行帶來(lái)了很大的方便,小亮調(diào)查了若干市民一周內(nèi)使用滴滴打車的時(shí)間t(單位:分)
(1)這次被調(diào)查的總?cè)藬?shù)是多少?
(2)試求表示C組的扇形圓心角的度數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若全市的總?cè)藬?shù)為666萬(wàn),試求全市一周內(nèi)使用滴滴打車超過(guò)20分鐘的人數(shù)大約有多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,等邊三角形ABC的邊長(zhǎng)為5,點(diǎn)P在線段AB上,點(diǎn)D在線段BC上,且△PDE是等邊三角形.
(1)初步嘗試:若點(diǎn)P與點(diǎn)A重合時(shí)(如圖1),BD+BE= .
(2)類比探究:將點(diǎn)P沿AB方向移動(dòng),使AP=1,其余條件不變(如圖2),試計(jì)算BD+BE的值是多少?
(3)拓展遷移:如圖3,在△ABC中,AB=AC,∠BAC=70°,點(diǎn)P在線段AB的延長(zhǎng)線上,點(diǎn)D在線段CB的延長(zhǎng)線上,在△PDE中,PD=PE,∠DPE=70°,設(shè)BP=a,請(qǐng)直接寫(xiě)出線段BD、BE之間的數(shù)量關(guān)系(用含a的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面內(nèi)的兩條直線有相交和平行兩種位置關(guān)系。
(1)如圖a,若AB∥CD,點(diǎn)P在AB、CD外部,則有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD +∠D,得∠BPD=∠B-∠D。將點(diǎn)P移到AB、CD內(nèi)部,如圖b,以上結(jié)論是否成立?若成立,說(shuō)明理由;若不成立,則∠BPD、∠B、∠D之間有何數(shù)量關(guān)系?請(qǐng)證明你的結(jié)論;
(2)在圖b中,將直線AB繞點(diǎn)B逆時(shí)針?lè)较蛐D(zhuǎn)一定角度交直線CD于點(diǎn)Q,如圖c,則∠BPD﹑∠B﹑∠D﹑∠BQD之間有何數(shù)量關(guān)系? (不需證明);
(3)根據(jù)(2)的結(jié)論求圖d中∠A+∠B+∠C+∠D+∠E+∠F的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為了測(cè)量某建筑物BC的高度,小明先在地面上用測(cè)角儀自A處測(cè)得建筑物頂部的仰角是30°,然后在水平地面上向建筑物前進(jìn)了10m到達(dá)D處,此時(shí)遇到一斜坡,坡度i=1:,沿著斜坡前進(jìn)10米到達(dá)E處測(cè)得建筑物頂部的仰角是45°,請(qǐng)求出該建筑物BC的高度為( 。ńY(jié)果可帶根號(hào))
A. 5+5 B. 5+5 C. 5+10 D. 5+10
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠ACB=90,AC=BC,AD⊥CE,BE⊥CE,垂足分別為D、E.
(1)求證:△ACD≌△CBE;
(2)已知AD=5,DE=3,求BE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com