【題目】如圖,在△ABC中,∠ACB=90°,O、D分別是邊AC、AB的中點,過點C作CE∥AB交DO的延長線于點E,連接AE.
(1)求證:四邊形AECD是菱形;
(2)若四邊形AECD的面積為24,tan∠BAC=,求BC的長.
【答案】(1)證明見解析;(2)BC=6.
【解析】(1)由ASA證明△AOD≌△COE,得出對應(yīng)邊相等AD=CE,證出四邊形AECD是平行四邊形,即可得出四邊形AECD是菱形;
(2)由菱形的性質(zhì)得出AC⊥ED,再利用三角函數(shù)解答即可.
(1)∵點O是AC中點,
∴OA=OC,
∵CE∥AB,
∴∠DAO=∠ECO,
在△AOD和△COE中,
,
∴△AOD≌△COE(ASA),
∴AD=CE,
∵CE∥AB,
∴四邊形AECD是平行四邊形,
又∵CD是Rt△ABC斜邊AB上的中線,
∴CD=AD,
∴四邊形AECD是菱形;
(2)由(1)知,四邊形AECD是菱形,
∴AC⊥ED,
在Rt△AOD中,tan∠DAO==tan∠BAC=,
設(shè)OD=3x,OA=4x,
則ED=2OD=6x,AC=2OA=8x,由題意可得:=24,
解得:x=1,
∴OD=3,
∵O,D分別是AC,AB的中點,
∴OD是△ABC的中位線,
∴BC=2OD=6.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D是BC邊上的中點,連結(jié)AD,BE平分∠ABC交AC于點E,過點E作EF∥BC交AB于點F.
(1)若∠C=36°,求∠BAD的度數(shù);
(2)求證:FB=FE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】李明準備進行如下操作實驗,把一根長40 cm的鐵絲剪成兩段,并把每段首尾相連各圍成一個正方形.
(1)要使這兩個正方形的面積之和等于58 cm2,李明應(yīng)該怎么剪這根鐵絲?
(2)李明認為這兩個正方形的面積之和不可能等于48 cm2,你認為他的說法正確嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知是上的一個動點,
(1)問題發(fā)現(xiàn)
如圖1,當點在線段上運動時,過點作,垂足為點,過點作,垂足為點,且.
①與是全等三角形嗎?請說明理由
②連接,試猜想的形狀,并說明理由;
(2)類比探究
如圖2,當在線段的延長線上時,過點作,垂足為點,過點作,垂足為點,且,試直接寫出的形狀.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,BD=DC,DE⊥BC,交∠BAC的平分線于E,EM⊥AB,EN⊥AC,
(1)求證:BM=CN
(2)若AB=9,AC=5.求AM長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c交x軸于A、B兩點(A在B的左側(cè)),且OA=3,OB=1,與y軸交于C(0,3),拋物線的頂點坐標為D(﹣1,4).
(1)求A、B兩點的坐標;
(2)求拋物線的解析式;
(3)過點D作直線DE∥y軸,交x軸于點E,點P是拋物線上B、D兩點間的一個動點(點P不與B、D兩點重合),PA、PB與直線DE分別交于點F、G,當點P運動時,EF+EG是否為定值?若是,試求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A. 擲一枚均勻的骰子,骰子停止轉(zhuǎn)動后,6點朝上是必然事件
B. 甲、乙兩人在相同條件下各射擊10次,他們的成績平均數(shù)相同,方差分別是S甲2=0.4,S乙2=0.6,則甲的射擊成績較穩(wěn)定
C. “明天降雨的概率為”,表示明天有半天都在降雨
D. 了解一批電視機的使用壽命,適合用普查的方式
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】超市購買大件物品都有送貨上門服務(wù),那么羅平沃爾瑪超市一輛貨車從超市出發(fā),向東走了,到達小明家,繼續(xù)向東走了到達小紅家,又向西走了到達小英家,最后回到超市.
(1)請以超市為原點,以向東為正方向,用1個單位長度表示,畫出數(shù)軸.并在數(shù)軸上表示出小明家、小紅家、小英家的位置;
(2)小英家距小明家有多遠?
(3)貨車一共行駛了多少千米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,作AB邊的垂直平分線交直線BC于M,交AB于點N.
(1)如圖,若,則=_________度;
(2)如圖,若,則=_________度;
(3)如圖,若,則=________度;
(4)由問,你能發(fā)現(xiàn)與∠A有什么關(guān)系?寫出猜想,并證明。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com