【題目】如圖,在ABC中,∠ACB=90°,O、D分別是邊AC、AB的中點,過點CCEABDO的延長線于點E,連接AE.

(1)求證:四邊形AECD是菱形;

(2)若四邊形AECD的面積為24,tanBAC=,求BC的長.

【答案】(1)證明見解析;(2)BC=6.

【解析】1)由ASA證明AOD≌△COE,得出對應(yīng)邊相等AD=CE,證出四邊形AECD是平行四邊形,即可得出四邊形AECD是菱形;

(2)由菱形的性質(zhì)得出ACED,再利用三角函數(shù)解答即可.

(1)∵點OAC中點,

OA=OC,

CEAB,

∴∠DAO=ECO,

AODCOE中,

,

∴△AOD≌△COE(ASA),

AD=CE,

CEAB,

∴四邊形AECD是平行四邊形,

又∵CDRtABC斜邊AB上的中線,

CD=AD,

∴四邊形AECD是菱形;

(2)由(1)知,四邊形AECD是菱形,

ACED,

RtAOD中,tanDAO==tanBAC=

設(shè)OD=3x,OA=4x,

ED=2OD=6x,AC=2OA=8x,由題意可得:=24,

解得:x=1,

OD=3,

O,D分別是AC,AB的中點,

ODABC的中位線,

BC=2OD=6.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABACDBC邊上的中點,連結(jié)ADBE平分∠ABCAC于點E,過點EEFBCAB于點F.

1)若∠C36°,求∠BAD的度數(shù);

2)求證:FBFE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】李明準備進行如下操作實驗,把一根長40 cm的鐵絲剪成兩段,并把每段首尾相連各圍成一個正方形.

(1)要使這兩個正方形的面積之和等于58 cm2,李明應(yīng)該怎么剪這根鐵絲?

(2)李明認為這兩個正方形的面積之和不可能等于48 cm2,你認為他的說法正確嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知上的一個動點,

1)問題發(fā)現(xiàn)

如圖1,當點在線段上運動時,過點,垂足為點,過點,垂足為點,且

是全等三角形嗎?請說明理由

②連接,試猜想的形狀,并說明理由;

2)類比探究

如圖2,當在線段的延長線上時,過點,垂足為點,過點,垂足為點,且,試直接寫出的形狀.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,BD=DC,DEBC,交∠BAC的平分線于E,EMAB,ENAC,

1)求證:BM=CN

2)若AB=9,AC=5.AM.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+cx軸于A、B兩點(AB的左側(cè)),且OA=3,OB=1,與y軸交于C(0,3),拋物線的頂點坐標為D(﹣1,4).

(1)求A、B兩點的坐標;

(2)求拋物線的解析式;

(3)過點D作直線DEy軸,交x軸于點E,點P是拋物線上B、D兩點間的一個動點(點P不與B、D兩點重合),PA、PB與直線DE分別交于點F、G,當點P運動時,EF+EG是否為定值?若是,試求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是( )

A. 擲一枚均勻的骰子,骰子停止轉(zhuǎn)動后,6點朝上是必然事件

B. 甲、乙兩人在相同條件下各射擊10次,他們的成績平均數(shù)相同,方差分別是S2=0.4,S2=0.6,則甲的射擊成績較穩(wěn)定

C. 明天降雨的概率為,表示明天有半天都在降雨

D. 了解一批電視機的使用壽命,適合用普查的方式

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】超市購買大件物品都有送貨上門服務(wù),那么羅平沃爾瑪超市一輛貨車從超市出發(fā),向東走了,到達小明家,繼續(xù)向東走了到達小紅家,又向西走了到達小英家,最后回到超市.

1)請以超市為原點,以向東為正方向,用1個單位長度表示,畫出數(shù)軸.并在數(shù)軸上表示出小明家、小紅家、小英家的位置;

2)小英家距小明家有多遠?

3)貨車一共行駛了多少千米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,作AB邊的垂直平分線交直線BCM,交AB于點N

1)如圖,若,則=_________度;

2)如圖,若,則=_________度;

3)如圖,若,則=________度;

4)由問,你能發(fā)現(xiàn)∠A有什么關(guān)系?寫出猜想,并證明。

查看答案和解析>>

同步練習冊答案