【題目】如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)y= 的圖象交于第二、四象限內(nèi)的A、B兩點(diǎn),與y軸交于C點(diǎn),過(guò)A作AH⊥y軸于H,OH=3,tan∠AOH= ,點(diǎn)B的坐標(biāo)為(m,﹣2).
(1)求△AHO的周長(zhǎng);
(2)求反比例函數(shù)和一次函數(shù)的解析式.
【答案】
(1)解:∵AH⊥y軸于點(diǎn)H,
∴∠AHO=90°,
∴tan∠AOH= ,AH=4,
∴OH=3,
∴由勾股定理可求出OA=5,
∴△AHO的周長(zhǎng)為3+4+5=12
(2)解:由(1)可知:點(diǎn)A的坐標(biāo)為(﹣4,3),
把(﹣4,3)代入y= ,可得k=﹣12,
∴反比例函數(shù)的解析式為:y=﹣ ,
∵把B(m,﹣2)代入反比例函數(shù)y=﹣ 中,可得m=6,
∴點(diǎn)B的坐標(biāo)為(6,﹣2),
將A(﹣4,3)和B(6,﹣2)代入y=ax+b,可得
,
解得: ,
∴一次函數(shù)的解析式為:y=﹣ x+1
【解析】(1)根據(jù)tan∠AOH= 求出AH的長(zhǎng)度,由勾股定理可求出OH的長(zhǎng)度即可求出△AHO的周長(zhǎng).(2)根據(jù)點(diǎn)A的坐標(biāo)為(﹣4,3),點(diǎn)A在反比例函數(shù)的圖象上,可求出k的值,將點(diǎn)B的坐標(biāo)代入反比例函數(shù)的解析式中求出m的值,然后將A、B兩點(diǎn)的坐標(biāo)代入一次函數(shù)解析式中即可求出該一次函數(shù)的解析式.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用確定一次函數(shù)的表達(dá)式和解直角三角形的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握確定一個(gè)一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問(wèn)題的一般方法是待定系數(shù)法;解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知一次函數(shù)y=﹣x+6與x,y軸分別交于A,B兩點(diǎn),點(diǎn)C(0,n)是y軸上一點(diǎn),把坐標(biāo)平面沿直線AC折疊,點(diǎn)B剛好落在x軸上,則點(diǎn)C的坐標(biāo)是( )
A. (0,3) B. (0,) C. (0,) D. (0,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A、F、E、C在同一直線上,AB∥CD,∠ABE=∠CDF,AF=CE.
(1)從圖中任找兩組全等三角形;
(2)從(1)中任選一組進(jìn)行證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=﹣ 與x軸、y軸分別交于點(diǎn)A、B;點(diǎn)Q是以C(0,﹣1)為圓心、1為半徑的圓上一動(dòng)點(diǎn),過(guò)Q點(diǎn)的切線交線段AB于點(diǎn)P,則線段PQ的最小是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊三角形ABC中,點(diǎn)D,E分別在邊BC,AC上,且DE∥AB,過(guò)點(diǎn)E作EF⊥DE,交BC的延長(zhǎng)線于點(diǎn)F.
(1)求∠F的度數(shù);
(2)若CD=2,求DF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在邊長(zhǎng)為1的正方形網(wǎng)格中標(biāo)有A、B、C、D、E、F六個(gè)格點(diǎn),根據(jù)圖中標(biāo)示的各點(diǎn)位置,與△ABC全等的是( 。
A. △ACF B. △ACE C. △ABD D. △CEF
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下圖是由幾個(gè)相同的小正方體搭成的幾何體,
(1)搭成這個(gè)幾何體需要 個(gè)小正方體;
(2)畫(huà)出這個(gè)幾何體的主視圖和左視圖;
(3)在保持主視圖和左視圖不變的情況下,最多可以拿掉n個(gè)小正方體,則n= ,請(qǐng)?jiān)趥溆脠D中畫(huà)出拿掉n個(gè)小正方體后新的幾何體的俯視圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一動(dòng)點(diǎn)從原點(diǎn)O出發(fā),沿著箭頭所示方向,每次移動(dòng)1個(gè)單位,依次得到點(diǎn)P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0),…,則點(diǎn)P2018的坐標(biāo)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知在△ABC中,AB=AC,D為線段BC上一點(diǎn),E為線段AC上一點(diǎn),且AD=AE.
(1)若∠ABC=60°,∠ADE=70°,求∠BAD與∠CDE的度數(shù);
(2)設(shè)∠BAD=α,∠CDE=β,試寫(xiě)出α、β之間的關(guān)系并加以證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com