【題目】某校團(tuán)委計(jì)劃在元且期間組織優(yōu)秀團(tuán)員到敬老院去服務(wù),現(xiàn)選出了10名優(yōu)秀團(tuán)員參加服務(wù),其中男生6人,女生4人.
若從這10人中隨機(jī)選一人當(dāng)隊(duì)長,求選中女生當(dāng)隊(duì)長的概率;
現(xiàn)決定從甲、乙中選一人當(dāng)隊(duì)長,他們準(zhǔn)備以游戲的方式?jīng)Q定由誰擔(dān)任,游戲規(guī)則如下:將四張牌面數(shù)字分別為2,3,4,5的撲克牌洗勻后,數(shù)字朝下放于桌面,從中任取2張,若牌面數(shù)字之和為偶數(shù),則選甲為隊(duì)長;否則,選乙為隊(duì)長試問這個(gè)游戲公平嗎?請用樹狀圖或列表法說明理由.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個(gè)含30°角的直角三角形ABC和直角三角形BED如圖那樣拼接,C、B、D在同一直線上,AC=BD,∠ABC=∠E=30°,∠ACB=∠BDE=90°,M為線段CB上一個(gè)動點(diǎn)(不與C、B重合).過M作MN⊥AM,交直線BE于N,過N作NH⊥BD于H.
(1)當(dāng)M在什么位置時(shí),△AMC∽△NBH?
(2)設(shè)AC=.
①若CM=2,求BH的長;
②當(dāng)M沿線段CB運(yùn)動時(shí),連接AN(圖中未連),求△AMN面積的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在研究“利用木板余料裁出最大面積的矩形”時(shí)發(fā)現(xiàn):如圖1,是一塊直角三角形形狀的木板余料,以為內(nèi)角裁一個(gè)矩形當(dāng)DE,EF是中位線時(shí),所裁矩形的面積最大若木板余料的形狀改變,請你探究:
如圖2,現(xiàn)有一塊五邊形的木板余料ABCDE,,,,,現(xiàn)從中裁出一個(gè)以為內(nèi)角且面積最大的矩形,則該矩形的面積為______.
如圖3,現(xiàn)有一塊四邊形的木板余料ABCD,經(jīng)測量,,,且,從中裁出頂點(diǎn)M,N在邊BC上且面積最大的矩形PQMN,則該矩形的面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C為⊙O外一點(diǎn),連接OC交⊙O于點(diǎn)D,連接BD并延長交線段AC于點(diǎn)E,∠CDE=∠CAD.
(1)求證:CD2=ACEC;
(2)判斷AC與⊙O的位置關(guān)系,并證明你的結(jié)論;
(3)若AE=EC,求tanB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)(x>0)與正比例函數(shù)y=kx、 (k>1)的圖象分別交于點(diǎn)A、B,若∠AOB=45°,則△AOB的面積是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△中,∠,點(diǎn)是邊上一點(diǎn),以為直徑的⊙與邊相切于點(diǎn),與邊交于點(diǎn),過點(diǎn)作⊥于點(diǎn),連接.
(1)求證:;
(2)若,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,四邊形ABCD中,AD∥BC,AD=CD,E是對角線BD上一點(diǎn),且EA=EC.
(1)求證:四邊形ABCD是菱形;
(2)如果BE=BC,且∠CBE:∠BCE=2:3,求證:四邊形ABCD是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知拋物線y=﹣x2+x+2與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),拋物線的頂點(diǎn)為Q,連接BC.
(1)求直線BC的解析式;
(2)點(diǎn)P是直線BC上方拋物線上的一點(diǎn),過點(diǎn)P作PD⊥BC于點(diǎn)D,在直線BC上有一動點(diǎn)M,當(dāng)線段PD最大時(shí),求PM+MB最小值;
(3)如圖②,直線AQ交y軸于G,取線段BC的中點(diǎn)K,連接OK,將△GOK沿直線AQ平移得△G′O'K′,將拋物線y=﹣x2+x+2沿直線AQ平移,記平移后的拋物線為y′,當(dāng)拋物線y′經(jīng)過點(diǎn)Q時(shí),記頂點(diǎn)為Q′,是否存在以G'、K'、Q'為頂點(diǎn)的三角形是等腰三角形?若存在,求出點(diǎn)G′的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,大海中有A和B兩個(gè)島嶼,為測量它們之間的距離,在海岸線PQ上點(diǎn)E處測得∠AEP=60°,∠BEQ=45°;在點(diǎn)F處測得∠AFP=45°,∠BFQ=90°,EF=2km.
(1)判斷AB、AE的數(shù)量關(guān)系,并說明理由;
(2)求兩個(gè)島嶼A和B之間的距離(結(jié)果保留根號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com