分析 (1)如圖1,延長CB和PA,記交點為點Q.根據(jù)等腰△QPC“三合一”的性質(zhì)證得QB=BC;由相似三角形(△QAB∽△QDC)的對應(yīng)邊成比例得到$\frac{AB}{CD}$=$\frac{QB}{QC}$=$\frac{1}{2}$,則CD=2AB;
(2)當(dāng)△BAP∽△CDP時,易得∠BPA=60°,x=AP=$\frac{BA}{tan60°}$=$\frac{4}{\sqrt{3}}$=$\frac{4\sqrt{3}}{3}$,當(dāng)△BAP∽△PDC時,易得∠BPA=30°,AP=$\frac{BA}{tan30°}$=$\frac{4}{\frac{\sqrt{3}}{3}}$=4$\sqrt{3}$,求出x的值即可.
解答 解:(1)CD的長度不變化.
理由如下:
如圖1,延長CB和PA,記交點為點Q.
∵∠BPC=∠BPA,BC⊥BP,
∴QB=BC(等腰三角形“三合一”的性質(zhì)).
∵BA⊥MN,CD⊥MN,
∴AB∥CD,
∴△QAB∽△QDC,
∴$\frac{AB}{CD}$=$\frac{QB}{QC}$=$\frac{1}{2}$,
∴CD=2AB=2×4=8,
即CD=8;
(2)當(dāng)△BAP∽△CDP時,
∵∠BPC=∠BPA,∠CPD=∠BPA,
∴∠BPA=∠BPC=∠CPD=60°,
∴AP=$\frac{BA}{tan60°}$=$\frac{4}{\sqrt{3}}$=$\frac{4\sqrt{3}}{3}$,
即x=$\frac{4\sqrt{3}}{3}$;
如圖2,當(dāng)△BAP∽△PDC時,
∵∠CPB=∠BPA,∠PCD=∠BPA,
∴3∠BPA=90°,
∴∠BPA=30°,
∴AP=$\frac{BA}{tan30°}$=$\frac{4}{\frac{\sqrt{3}}{3}}$=4$\sqrt{3}$,
即x=4$\sqrt{3}$;
即當(dāng)x=$\frac{4\sqrt{3}}{3}$或4$\sqrt{3}$時,△ABP和△CDP相似.
點評 本題考查了相似三角形的判定與性質(zhì)和銳角三角函數(shù)關(guān)系等知識,熟練利用相似三角形的性質(zhì)得出線段之間的關(guān)系是解題關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | x>$\frac{1}{3}$ | B. | x≥$\frac{1}{3}$ | C. | x>2 | D. | $\frac{1}{3}$≤x<2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com