在正方形ABCD的邊AB上任取一點E,作EF⊥AB交BD于點F,取FD的中點G,連接EG、CG,如圖(1),易證 EG=CG且EG⊥CG.

(1)將△BEF繞點B逆時針旋轉(zhuǎn)90°,如圖(2),則線段EG和CG有怎樣的數(shù)量關(guān)系和位置關(guān)系?請直接寫出你的猜想.

(2)將△BEF繞點B逆時針旋轉(zhuǎn)180°,如圖(3),則線段EG和CG又有怎樣的數(shù)量關(guān)系和位置關(guān)系?請寫出你的猜想,并加以證明.

解:(1) EG=CG,EG⊥CG.        (2分)

(2)EG=CG,EG⊥CG.             (2分)

證明:延長FE交DC延長線于M,連MG.

∵∠AEM=90°,∠EBC=90°,∠BCM=90°,

∴四邊形BEMC是矩形.

∴BE=CM,∠EMC=90°,

又∵BE=EF,

∴EF=CM.

∵∠EMC=90°,F(xiàn)G=DG,

∴MG=FD=FG.

∵BC=EM,BC=CD,

∴EM=CD.

∵EF=CM,

∴FM=DM,

∴∠F=45°.

又FG=DG,

∠CMG=∠EMC=45°,

∴∠F=∠GMC.

∴△GFE≌△GMC.

∴EG=CG,∠FGE=∠MGC.          (2分)

∵∠FMC=90°,MF=MD,F(xiàn)G=DG,

∴MG⊥FD,

∴∠FGE+∠EGM=90°,

∴∠MGC+∠EGM=90°,即∠EGC=90°,

∴EG⊥CG.                     (2分)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

把兩個正方形紙片在相同的頂點A處釘上一個釘子,然后旋轉(zhuǎn)小正方形AEFG.已知大正方形的邊長為4,小正方形的邊長為a(a≤2).(以下答案可以用含a的代數(shù)式表示)
(1)把小正方形AEFG繞A點旋轉(zhuǎn),讓點F落在正方形ABCD的邊AD上得圖1,求△BDF的面積S△BDF
(2)把小正方形AEFG繞A點按逆時針方向旋轉(zhuǎn)45°得圖2,求圖中△BDF的面積S△BDF
(3)把小正方形AEFG繞A點旋轉(zhuǎn)任意角度,在旋轉(zhuǎn)過程中,設(shè)△BDF的面積為S△BDF,試求S△BDF的取值范圍,并說明理由.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

42、如圖,在正方形ABCD的邊BC上任取一點M,過點C作CN⊥DM交AB于N,設(shè)正方形對角線交點為O,試確定OM與ON之間的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖1,點E、F在正方形ABCD的邊BC、CD上,且AE⊥BF于G.

(1)AE與BF相等嗎?請說明理由;
(2)運用圖形的平移、旋轉(zhuǎn)方法,分析說明△ABE和△BCF可以通過怎樣的平移和旋轉(zhuǎn)而相互得到如圖1,點H、E、F、L在正方形ABCD的邊上,且LE⊥HF于G,圖2通過怎樣的方法可以得到圖1,從而分析說明LE與HF相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•達(dá)州)通過類比聯(lián)想、引申拓展研究典型題目,可達(dá)到解一題知一類的目的.下面是一個案例,請補(bǔ)充完整.
原題:如圖1,點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,連接EF,則EF=BE+DF,試說明理由.

(1)思路梳理
∵AB=AD,
∴把△ABE繞點A逆時針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合.
∵∠ADC=∠B=90°,
∴∠FDG=180°,點F、D、G共線.
根據(jù)
SAS
SAS
,易證△AFG≌
△AEF
△AEF
,得EF=BE+DF.
(2)類比引申
如圖2,四邊形ABCD中,AB=AD,∠BAD=90°點E、F分別在邊BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,則當(dāng)∠B與∠D滿足等量關(guān)系
∠B+∠D=180°
∠B+∠D=180°
時,仍有EF=BE+DF.
(3)聯(lián)想拓展
如圖3,在△ABC中,∠BAC=90°,AB=AC,點D、E均在邊BC上,且∠DAE=45°.猜想BD、DE、EC應(yīng)滿足的等量關(guān)系,并寫出推理過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,正方形CEFG的對角線CF在正方形ABCD的邊BC的延長線上(CE>BC),點M在CF上,且MF=AB,線段AF與DM交于點N.
(1)求證:DN=MN
(2)探究線段NG、MD的數(shù)量和位置關(guān)系,并加以證明.

查看答案和解析>>

同步練習(xí)冊答案