【題目】如圖,拋物線與軸交于點(diǎn)C(O,4),與軸交于點(diǎn)A和點(diǎn)B,其中點(diǎn)A的坐標(biāo)為(-2,0),拋物線的對(duì)稱軸與拋物線交于點(diǎn)D,與直線BC交于點(diǎn)E.
(1)求拋物線的解析式;
(2)若點(diǎn)F是直線BC上方的拋物線上的一個(gè)動(dòng)點(diǎn),是否存在點(diǎn)F使四邊形ABFC的面積為17,若存在,求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)平行于DE的一條動(dòng)直線Z與直線BC相交于點(diǎn)P,與拋物線相交于點(diǎn)Q,若以D、E、P、Q為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)P的坐標(biāo)。
【答案】(1)拋物線的解析式是;
(2)不存在滿足條件的點(diǎn)F;
(3)滿足條件的點(diǎn)P有三個(gè),分別是P1 (3,1),P2(2+,2 -),P3(2—,2十)
【解析】
試題(1)先把C(0,4)代入y=ax2+bx+c,得出c=4①,再由拋物線的對(duì)稱軸x=-=1,得到b=-2a②,拋物線過(guò)點(diǎn)A(-2,0),得到0=4a-2b+c③,然后由①②③可解得,a=-,b=1,c=4,即可求出拋物線的解析式為y=-x2+x+4;(2)假設(shè)存在滿足條件的點(diǎn)F,連結(jié)BF、CF、OF,過(guò)點(diǎn)F作FH⊥x軸于點(diǎn)H,F(xiàn)G⊥y軸于點(diǎn)G.設(shè)點(diǎn)F的坐標(biāo)為(t,-t2+t+4),則FH=-t2+t+4,F(xiàn)G=t,先根據(jù)三角形的面積公式求出S△OBF=OBFH=-t2+2t+8,S△OFC=OCFG=2t,再由S四邊形ABFC=S△AOC+S△OBF+S△OFC,得到S四邊形ABFC=-t2+4t+12.令-t2+4t+12=17,即t2-4t+5=0,由△=(-4)2-4×5=-4<0,得出方程t2-4t+5=0無(wú)解,即不存在滿足條件的點(diǎn)F;
(3)先運(yùn)用待定系數(shù)法求出直線BC的解析式為y=-x+4,再求出拋物線y=-x2+x+4的頂點(diǎn)D(1,),由點(diǎn)E在直線BC上,得到點(diǎn)E(1,3),于是DE=-3=.若以D、E、P、Q為頂點(diǎn)的四邊形是平行四邊形,因?yàn)镈E∥PQ,只須DE=PQ,設(shè)點(diǎn)P的坐標(biāo)是(m,-m+4),則點(diǎn)Q的坐標(biāo)是(m,-m2+m+4).分兩種情況進(jìn)行討論:①當(dāng)0<m<4時(shí),PQ=(-m2+m+4)-(-m+4)=-m2+2m,解方程-m2+2m=,求出m的值,得到P1(3,1);②當(dāng)m<0或m>4時(shí),PQ=(-m+4)-(-m2+m+4)=m2-2m,解方程m2-2m=,求出m的值,得到P2(2+,2-),P3(2-,2+).
試題解析:(1)由拋物線經(jīng)過(guò)點(diǎn)C(O,4)可得c=4,①
∵對(duì)稱軸x= =1,∴b=-2a,②,
又拋物線過(guò)點(diǎn)A(一2,O)∴0=4a-2b+c,③
由①②③ 解得:a=, b=1 ,c=4.
所以拋物線的解析式是
(2)假設(shè)存在滿足條件的點(diǎn)F,連接BF、CF、OF.
過(guò)點(diǎn)F分別作FH⊥x軸于H , FG⊥y軸于G.
設(shè)點(diǎn)F的坐標(biāo)為(t, +t+4),其中O<t<4, 則FH=+t+4 FG=t,
∴=OB.FH=×4×(+4t+4)=-+2t+8 ,
=OC.FC=×4×t=2t
令-+4t+12 =17,即-4t+5=0,則△= -4<0,
∴方程-4t+5=0無(wú)解,故不存在滿足條件的點(diǎn)F.
(3)設(shè)直線BC的解析式為y=kx+b(k≠O),又過(guò)點(diǎn)B(4,0), C(0,4)
所以,解得:,
所以直線BC的解析式是y= -x+4.
由y=+4x+4=+,得D(1,),
又點(diǎn)E在直線BC上,則點(diǎn)E(1,3),
于是DE=-3= .
若以D.E.P.Q為頂點(diǎn)的四邊形是平行四邊形,
因?yàn)?/span>DE∥PQ,只須DE=PQ,
設(shè)點(diǎn)P的坐標(biāo)是(m,-m+4),則點(diǎn)Q的坐標(biāo)是(m,-+m+4).
①當(dāng)O<m<4時(shí),PQ=(-+m+4)-(-m+4)= -+2m.
由-+2m= ,解得:m=1或3.
當(dāng)m=1時(shí),線段PQ與DE重合,m=-1舍去,
∴m=-3,此時(shí)P1 (3,1).
②當(dāng)m<0或m>4時(shí),PQ=(-m+4)-(-++m+4)= -2m,
由-2m=,解得m=2±,經(jīng)檢驗(yàn)適合題意,
此時(shí)P2(2+,2-),P3(2-,2+).
綜上所述,滿足條件的點(diǎn)P有三個(gè),分別是P1 (3,1),P2(2+,2 -),P3(2-,2+)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=4,點(diǎn)E是AB邊上一點(diǎn),且AE=2,點(diǎn)F是邊BC上的任意一點(diǎn),把△BEF沿EF翻折,點(diǎn)B的對(duì)應(yīng)點(diǎn)為G,連接AG,CG,則四邊形AGCD的面積的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為改善辦學(xué)條件,計(jì)劃購(gòu)進(jìn)兩種規(guī)格的書架,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn)有線下和線上兩種方式,具有情況如下表:
規(guī)格 | 線下 | 線上 | ||
單價(jià)(元/個(gè)) | 運(yùn)費(fèi)(元/個(gè)) | 單價(jià)(元/個(gè)) | 運(yùn)費(fèi)(元/個(gè)) | |
A | 240 | 0 | 210 | 20 |
B | 300 | 0 | 250 | 30 |
(Ⅰ)如果在線下購(gòu)買兩種書架20個(gè),共花費(fèi)5520元,求兩種書架各購(gòu)買了多少個(gè);
(Ⅱ)如果在線上購(gòu)買兩種書架20個(gè),共花費(fèi)元,設(shè)其中種書架購(gòu)買個(gè),求W關(guān)于的函數(shù)關(guān)系式;
(Ⅲ)在(Ⅱ)的條件下,若購(gòu)買種書架的數(shù)量不少于種書架的2倍,請(qǐng)求出花費(fèi)最少的購(gòu)買方案,并計(jì)算按照該購(gòu)買方案線上比線下節(jié)約多少錢.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知長(zhǎng)方形硬紙板ABCD的長(zhǎng)BC為40cm,寬CD為30cm,按如圖所示剪掉2個(gè)小正方形和2個(gè)小長(zhǎng)方形(即圖中陰影部分),將剩余部分折成一個(gè)有蓋的長(zhǎng)方體盒子,
設(shè)剪掉的小正方形邊長(zhǎng)為xcm.(紙板的厚度忽略不計(jì))
(1)填空:EF= .cm,GH= .cm;(用含x的代數(shù)式表示)
(2)若折成的長(zhǎng)方體盒子的表面積為950cm2,求該長(zhǎng)方體盒子的體積
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)的部分圖象如圖,圖象過(guò)點(diǎn)(﹣1,0),對(duì)稱軸為直線,下列結(jié)論:①;②;③;④當(dāng)時(shí), 隨的增大而增大.其中正確的結(jié)論有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商家計(jì)劃從廠家采購(gòu)空調(diào)和冰箱兩種產(chǎn)品共20臺(tái),空調(diào)的采購(gòu)單價(jià)y1(元/臺(tái))與采購(gòu)數(shù)量x1(臺(tái))滿足y1=﹣20x1+1500(0<x1≤20,x1為整數(shù));冰箱的采購(gòu)單價(jià)y2(元/臺(tái))與采購(gòu)數(shù)量x2(臺(tái))滿足y2=﹣10x2+1300(0<x2≤20,x2為整數(shù)).
(1)經(jīng)商家與廠家協(xié)商,采購(gòu)空調(diào)的數(shù)量不少于冰箱數(shù)量的,且空調(diào)采購(gòu)單價(jià)不低于1200元,問(wèn)該商家共有幾種進(jìn)貨方案?
(2)該商家分別以1760元/臺(tái)和1700元/臺(tái)的銷售單價(jià)售出空調(diào)和冰箱,且全部售完.在(1)的條件下,問(wèn)采購(gòu)空調(diào)多少臺(tái)時(shí)總利潤(rùn)最大?并求最大利潤(rùn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,點(diǎn)E是線段BC延長(zhǎng)線上一點(diǎn),ED⊥AB,垂足為D,ED交線段AC于點(diǎn)F,點(diǎn)O在線段EF上,⊙O經(jīng)過(guò)C、E兩點(diǎn),交ED于點(diǎn)G.
(1)求證:AC是⊙O的切線;
(2)若∠E=30°,AD=1,BD=5,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,港口B位于港口O正西方向120 km處,小島C位于港口O北偏西60°的方向.一艘游船從港口O出發(fā),沿OA方向(北偏西30°)以v km/h的速度駛離港口O,同時(shí)一艘快艇從港口B出發(fā),沿北偏東30°的方向以60 km/h的速度駛向小島C,在小島C用1 h加裝補(bǔ)給物資后,立即按原來(lái)的速度給游船送去.
(1)快艇從港口B到小島C需要多長(zhǎng)時(shí)間?
(2)若快艇從小島C到與游船相遇恰好用時(shí)1h,求v的值及相遇處與港口O的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,點(diǎn)C在⊙O上,延長(zhǎng)BC至點(diǎn)D,使DC=CB,延長(zhǎng)DA
與⊙O的另一個(gè)交點(diǎn)為E,連結(jié)AC,CE。
(1)求證:∠B=∠D;
(2)若AB=4,BC-AC=2,求CE的長(zhǎng)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com