分析 (1)由點A、B、C的坐標利用待定系數(shù)法即可求出拋物線的解析式;
(2)設出點M的坐標以及直線BC的解析式,由點B、C的坐標利用待定系數(shù)法即可求出直線BC的解析式,結(jié)合點M的坐標即可得出點N的坐標,由此即可得出線段MN的長度關(guān)于m的函數(shù)關(guān)系式,再結(jié)合點M在x軸下方可找出m的取值范圍,利用二次函數(shù)的性質(zhì)即可解決最值問題;
(3)假設存在,設出點P的坐標為(2,n),結(jié)合(2)的結(jié)論可求出點N的坐標,結(jié)合點N、B的坐標利用兩點間的距離公式求出線段PN、PB、BN的長度,根據(jù)等腰三角形的性質(zhì)分類討論即可求出n值,從而得出點P的坐標.
解答 解:(1)由題意點A(1,0)、B(3,0)、C(0,3)代入拋物線y=ax2+bx+c中,
得:$\left\{\begin{array}{l}{a+b+c=0}\\{9a+3b+c=0}\\{c=3}\end{array}\right.$,解得:$\left\{\begin{array}{l}{a=1}\\{b=-4}\\{c=3}\end{array}\right.$,
∴拋物線的解析式為y=x2-4x+3.
(2)設點M的坐標為(m,m2-4m+3),設直線BC的解析式為y=kx+3,
把點點B(3,0)代入y=kx+3中,
得:0=3k+3,解得:k=-1,
∴直線BC的解析式為y=-x+3.
∵MN∥y軸,
∴點N的坐標為(m,-m+3).
∵拋物線的解析式為y=x2-4x+3=(x-2)2-1,
∴拋物線的對稱軸為x=2,
∴點(1,0)在拋物線的圖象上,
∴1<m<3.
∵線段MN=-m+3-(m2-4m+3)=-m2+3m=-(m-$\frac{3}{2}$)2+$\frac{9}{4}$,
∴當m=$\frac{3}{2}$時,線段MN取最大值,最大值為 $\frac{9}{4}$.
(3)假設存在.設點P的坐標為(2,n).
當m=$\frac{3}{2}$時,點N的坐標為( $\frac{3}{2}$,$\frac{3}{2}$),
∴PB=$\sqrt{(2-3)^{2}+(n-0)^{2}}$=$\sqrt{1+{n}^{2}}$,PN=$\sqrt{(2-\frac{3}{2})^{2}+(n-\frac{3}{2})^{2}}$,BN=$\sqrt{(3-\frac{3}{2})^{2}+(0-\frac{3}{2})^{2}}$=$\frac{3\sqrt{2}}{2}$.
△PBN為等腰三角形分三種情況:
①當PB=BN時,即 $\sqrt{1+{n}^{2}}$=$\frac{3\sqrt{2}}{2}$,
解得:n=±$\frac{\sqrt{14}}{2}$,
此時點P的坐標為(2,-$\frac{\sqrt{14}}{2}$)或(2,$\frac{\sqrt{14}}{2}$).
②當PN=BN時,即 $\sqrt{(2-\frac{3}{2})^{2}+(n-\frac{3}{2})^{2}}$=$\frac{3\sqrt{2}}{2}$,
解得:n=$\frac{3±\sqrt{17}}{2}$,
此時點P的坐標為(2,$\frac{3-\sqrt{17}}{2}$)或(2,$\frac{3+\sqrt{17}}{2}$).
綜上可知:在拋物線的對稱軸l上存在點P,使△PBN是等腰三角形,點P的坐標為(2,-$\frac{\sqrt{14}}{2}$)或(2,$\frac{\sqrt{14}}{2}$)或(2,$\frac{3-\sqrt{17}}{2}$)或(2,$\frac{3+\sqrt{17}}{2}$).
點評 本題考查了待定系數(shù)法求函數(shù)解析式、二次函數(shù)圖象上點的坐標特征、二次函數(shù)的性質(zhì)、兩點間的距離以及等腰三角形的性質(zhì),解題的關(guān)鍵是:(1)利用待定系數(shù)法求出函數(shù)解析式;(2)利用二次函數(shù)的性質(zhì)解決最值問題;(3)分類討論.本題屬于中檔題,難度不大,解決該題型題目時,利用配方法將二次函數(shù)解析式變形為頂點式,再結(jié)合二次函數(shù)的性質(zhì)解決最值問題是關(guān)鍵.
科目:初中數(shù)學 來源: 題型:選擇題
A. | y=(x+2)2+4 | B. | y=(x-2)2-4 | C. | y=(x-2)2+4 | D. | y=(x+2)2-4 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 20° | B. | 25° | C. | 30° | D. | 40° |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | (-1,1) | B. | (-2,6) | C. | (2,4) | D. | (4,-1) |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 11cm或5cm | B. | 5cm | C. | 11cm | D. | 11cm或3cm |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com