【題目】拋物線y=x2+bx+c經(jīng)過點(diǎn)A、B、C,已知A(﹣1,0),C(0,﹣3).
(1)求拋物線的解析式;
(2)如圖1,拋物線頂點(diǎn)為E,EF⊥x軸于F點(diǎn),M(m,0)是x軸上一動點(diǎn),N是線段EF上一點(diǎn),若∠MNC=90°,請指出實(shí)數(shù)m的變化范圍,并說明理由.
(3)如圖2,將拋物線平移,使其頂點(diǎn)E與原點(diǎn)O重合,直線y=kx+2(k>0)與拋物線相交于點(diǎn)P、Q(點(diǎn)P在左邊),過點(diǎn)P作x軸平行線交拋物線于點(diǎn)H,當(dāng)k發(fā)生改變時(shí),請說明直線QH過定點(diǎn),并求定點(diǎn)坐標(biāo).
【答案】(1)y=x2﹣2x﹣3;(2);(3)當(dāng)k發(fā)生改變時(shí),直線QH過定點(diǎn),定點(diǎn)坐標(biāo)為(0,﹣2)
【解析】
(1)把點(diǎn)A(﹣1,0),C(0,﹣3)代入拋物線表達(dá)式求得b,c,即可得出拋物線的解析式;
(2)作CH⊥EF于H,設(shè)N的坐標(biāo)為(1,n),證明Rt△NCH∽△MNF,可得m=n2+3n+1,因?yàn)椹?/span>4≤n≤0,即可得出m的取值范圍;
(3)設(shè)點(diǎn)P(x1,y1),Q(x2,y2),則點(diǎn)H(﹣x1,y1),設(shè)直線HQ表達(dá)式為y=ax+t,用待定系數(shù)法和韋達(dá)定理可求得a=x2﹣x1,t=﹣2,即可得出直線QH過定點(diǎn)(0,﹣2).
解:(1)∵拋物線y=x2+bx+c經(jīng)過點(diǎn)A、C,
把點(diǎn)A(﹣1,0),C(0,﹣3)代入,得:,
解得,
∴拋物線的解析式為y=x2﹣2x﹣3;
(2)如圖,作CH⊥EF于H,
∵y=x2﹣2x﹣3=(x﹣1)2﹣4,
∴拋物線的頂點(diǎn)坐標(biāo)E(1,﹣4),
設(shè)N的坐標(biāo)為(1,n),﹣4≤n≤0
∵∠MNC=90°,
∴∠CNH+∠MNF=90°,
又∵∠CNH+∠NCH=90°,
∴∠NCH=∠MNF,
又∵∠NHC=∠MFN=90°,
∴Rt△NCH∽△MNF,
∴,即
解得:m=n2+3n+1=,
∴當(dāng)時(shí),m最小值為;
當(dāng)n=﹣4時(shí),m有最大值,m的最大值=16﹣12+1=5.
∴m的取值范圍是.
(3)設(shè)點(diǎn)P(x1,y1),Q(x2,y2),
∵過點(diǎn)P作x軸平行線交拋物線于點(diǎn)H,
∴H(﹣x1,y1),
∵y=kx+2,y=x2,
消去y得,x2﹣kx﹣2=0,
x1+x2=k,x1x2=﹣2,
設(shè)直線HQ表達(dá)式為y=ax+t,
將點(diǎn)Q(x2,y2),H(﹣x1,y1)代入,得,
∴y2﹣y1=a(x1+x2),即k(x2﹣x1)=ka,
∴a=x2﹣x1,
∵=( x2﹣x1)x2+t,
∴t=﹣2,
∴直線HQ表達(dá)式為y=( x2﹣x1)x﹣2,
∴當(dāng)k發(fā)生改變時(shí),直線QH過定點(diǎn),定點(diǎn)坐標(biāo)為(0,﹣2).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交
于點(diǎn)A(1,4)、點(diǎn)B(-4,n).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△OAB的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題發(fā)現(xiàn):
()如圖①,中,,,,點(diǎn)是邊上任意一點(diǎn),則的最小值為__________.
()如圖②,矩形中,,,點(diǎn)、點(diǎn)分別在、上,求的最小值.
()如圖③,矩形中,,,點(diǎn)是邊上一點(diǎn),且,點(diǎn)是邊上的任意一點(diǎn),把沿翻折,點(diǎn)的對應(yīng)點(diǎn)為點(diǎn),連接、,四邊形的面積是否存在最小值,若存在,求這個最小值及此時(shí)的長度;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有一直角三角形AOB,O為坐標(biāo)原點(diǎn),OA=1,tan∠BAO=3,將此三角形繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到△DOC,拋物線y=ax2+bx+c經(jīng)過點(diǎn)A、B、C.
(1)求拋物線的解析式;
(2)若點(diǎn)P是第二象限內(nèi)拋物線上的動點(diǎn),其橫坐標(biāo)為t,設(shè)拋物線對稱軸l與x軸交于一點(diǎn)E,連接PE,交CD于F,求以C、E、F為頂點(diǎn)三角形與△COD相似時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD沿對角線AC剪開,再把△ACD沿CA方向平移得到△A1C1D1,連結(jié)AD1,BC1.若∠ACB=30°,AB=1,CC1=x,△ACD與△A1C1D1重疊部分的面積為s,則下列結(jié)論:①△A1AD1≌△CC1B②當(dāng)x=1時(shí),四邊形ABC1D1是菱形 ③當(dāng)x=2時(shí),△BDD1為等邊三角形 ④s= (x﹣2)2(0<x<2),其中正確的有( 。
A. 1 個B. 2 個C. 3 個D. 4 個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)戶承包荒山種植某產(chǎn)品種蜜柚已知該蜜柚的成本價(jià)為8元千克,投入市場銷售時(shí),調(diào)查市場行情,發(fā)現(xiàn)該蜜柚銷售不會虧本,且每天銷量千克與銷售單價(jià)元千克之間的函數(shù)關(guān)系如圖所示.
求y與x的函數(shù)關(guān)系式,并寫出x的取值范圍;
當(dāng)該品種蜜柚定價(jià)為多少時(shí),每天銷售獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在趣味運(yùn)動會“定點(diǎn)投籃”項(xiàng)目中,我校七年級八個班的投籃成績單位:個分別為:24,20,19,20,22,23,20,則這組數(shù)據(jù)中的眾數(shù)和中位數(shù)分別是
A. 22個、20個 B. 22個、21個 C. 20個、21個 D. 20個、22個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,OABC是正方形,點(diǎn)A的坐標(biāo)是(4,0),點(diǎn)P為邊AB上一點(diǎn),∠CPB=60°,沿CP折疊正方形,折疊后,點(diǎn)B落在平面內(nèi)點(diǎn)B′處,則B′點(diǎn)的坐標(biāo)為( 。
A. (2,2)B. (,)C. (2,)D. (,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知Rt△AOB的兩條直角邊OA、OB分別在y軸和x軸上,并且OA、OB的長分別是方程x2-7x+12=0的兩根(OA<OB),動點(diǎn)P從點(diǎn)A開始在線段AO上以每秒1個單位長度的速度向點(diǎn)O運(yùn)動;同時(shí),動點(diǎn)Q從點(diǎn)B開始在線段BA上以每秒2個單位長度的速度向點(diǎn)A運(yùn)動,設(shè)點(diǎn)P、Q運(yùn)動的時(shí)間為t秒.
(1)求A、B兩點(diǎn)的坐標(biāo).
(2)求當(dāng)t為何值時(shí),△APQ與△AOB相似?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com