【題目】如圖,四邊形ABCD為矩形,以A為圓心,AD為半徑的弧交AB的延長線于點E,連接BD,若AD=2AB=4,則圖中陰影部分的面積為______

【答案】π+2-4

【解析】

BC交弧DEF,連接AF,如圖,先利用三角函數(shù)得到∠AFB=30°,則∠BAF=60°,∠DAF=30°,BF=AB=2,然后根據(jù)三角形面積公式和扇形的面積公式,利用圖中陰影部分的面積=S扇形ADF+SABF-SABD進行計算即可.

解:BC交弧DEF,連接AF,如圖,

AF=AD=4,

AD=2AB=4

AB=2,

RtABF中,∵sinAFB==

∴∠AFB=30°,

∴∠BAF=60°,∠DAF=30°,BF=AB=2

∴圖中陰影部分的面積=S扇形ADF+SABF-SABD

=+×2×2-×2×4

=π+2-4

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知,上的一點,在同側(cè)作正方形,正方形分別為對角線的中點,連結(jié)當點沿著線段由點向點方向上移動時,四邊形的面積變化情況為( )

A.不變B.先減小后增大

C.先增大后減小D.一直減小

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線yx+2x軸交于點A,與y軸交于點C.拋物線yax2+bx+c的對稱軸是x=﹣且經(jīng)過A、C兩點,與x軸的另一交點為點B

1直接寫出點B的坐標;求拋物線解析式.

2)若點P為直線AC上方的拋物線上的一點,連接PA,PC.求△PAC的面積的最大值,并求出此時點P的坐標.

3)拋物線上有一點M,過點MMN垂直x軸于點N,使得以點A、MN為頂點的三角形與△ABC相似,直接寫出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,拋物線y=-x2+bx+c經(jīng)過點A30)和點B2,3),過點A的直線與y軸的負半軸相交于點C,且tanCAO=

1)求這條拋物線的表達式及對稱軸;

2)聯(lián)結(jié)AB、BC,求∠ABC的正切值;

3)若點Dx軸下方的對稱軸上,當SDBC=SADC時,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中國海軍亞丁灣護航十年,中國海軍被亞丁灣上來往的各國商船譽為值得信賴的保護傘.如圖,在一次護航行動中,我國海軍監(jiān)測到一批可疑快艇正快速向護航的船隊靠近,為保證船隊安全,我國海軍迅速派出甲、乙兩架直升機分別從相距40海里的船隊首(點)尾(點)前去攔截,8分鐘后同時到達點將可疑快艇驅(qū)離.己知甲直升機每小時飛行180海里,航向為北偏東,乙直升機的航向為北偏西,求乙直升機的飛行速度(單位:海里/小時).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】參照學習函數(shù)的過程方法,探究函數(shù)的圖像與性質(zhì),因為,即,所以我們對比函數(shù)來探究列表:

-4

-3

-2

-1

1

2

3

4

1

2

4

-4

-2

-1

2

3

5

-3

-2

0

描點:在平面直角坐標系中以自變量的取值為橫坐標,以相應的函數(shù)值為縱坐標,描出相應的點如圖所示:

1)請把軸左邊各點和右邊各點分別用一條光滑曲線,順次連接起來;

2)觀察圖象并分析表格,回答下列問題:

①當時,的增大而______;(“增大”或“減小”)

的圖象是由的圖象向______平移______個單位而得到的;

③圖象關于點______中心對稱.(填點的坐標)

3)函數(shù)與直線交于點,,求的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=2x與函數(shù)y=x0)的圖象交于點A1,2).

1)求m的值;

2)過點Ax軸的平行線l,直線y=2x+b與直線l交于點B,與函數(shù)y=x0)的圖象交于點C,與x軸交于點D

若點C是線段BD的中點時,則點C的坐標是________,b的值是________;

BCBD時,直接寫出b的取值范圍________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形的頂點分別在軸,軸上,頂點在第二象限,點的坐標為.將線段繞點逆時針旋轉(zhuǎn)至線段,若反比例函數(shù)y=k≠0)的圖象經(jīng)過A、D兩點,則k值為_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線與反比例函數(shù)的圖象相交于兩點,延長AO交反比例函數(shù)的圖象于點C,連接OB

1)求kb的值;

2)根據(jù)圖象直接寫出的解集;

3)在軸上是否存在一點P,使得?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案