【題目】如圖,在△ABC中,AB=BC,∠ABC=100°,BD是∠ABC的平分線,E是AB的中點(diǎn).
(1)證明DE∥BC;(2)求∠EDB的度數(shù).
【答案】(1)詳見解析;(2)50°.
【解析】
(1)根據(jù)等腰三角形三線合一的性質(zhì)可得D是AC的中點(diǎn),已知又E是AB的中點(diǎn),由此可得ED是△ABC的中位線,根據(jù)三角形的中位線定理即可證得DE∥BC;(2)根據(jù)等腰三角形三線合一的性質(zhì)可得∠DBA=∠CBD=50°,由平行線的性質(zhì)即可得∠EDB =∠CBD=50°.
(1)證明:∵BD是等腰△ABC的∠ABC的平分線,
∴D是AC的中點(diǎn),
又E是AB的中點(diǎn),
∴ED是△ABC的中位線,
∴DE∥BC.
(2)∵∠ABC=100°,BD是∠ABC的平分線,
∴∠DBA=∠CBD=50°,
∵DE∥BC,
∴∠EDB =∠CBD=50°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E在正方形ABCD的對(duì)角線AC上,且EC=2AE,直角三角形FEG的兩直角邊EF、EG分別交BC、DC于點(diǎn)M、N.若正方形ABCD的邊長(zhǎng)為a,則重疊部分四邊形EMCN的面積為( )
A. a2
B. a2
C. a2
D. a2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,OA⊥OB,AB⊥x軸于點(diǎn)C,點(diǎn)A( ,1)在反比例函數(shù)y= 的圖象上.
(1)求反比例函數(shù)y= 的表達(dá)式;
(2)在x軸的負(fù)半軸上存在一點(diǎn)P,使得S△AOP= S△AOB , 求點(diǎn)P的坐標(biāo);
(3)若將△BOA繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)60°得到△BDE.直接寫出點(diǎn)E的坐標(biāo),并判斷點(diǎn)E是否在該反比例函數(shù)的圖象上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A(﹣1,0)、B(3,0).
(1)求b、c的值;
(2)如圖1直線y=kx+1(k>0)與拋物線第一象限的部分交于D點(diǎn),交y軸于F點(diǎn),交線段BC于E點(diǎn).求 的最大值;
(3)如圖2,拋物線的對(duì)稱軸與拋物線交于點(diǎn)P、與直線BC相交于點(diǎn)M,連接PB.問在直線BC下方的拋物線上是否存在點(diǎn)Q,使得△QMB與△PMB的面積相等?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的對(duì)角線AC和BD交于點(diǎn)O,分別過點(diǎn)C、D作CE∥BD,DE∥AC,CE和DE交于點(diǎn)E.
(1)求證:四邊形ODEC是矩形;
(2)當(dāng)∠ADB=60°,AD=2 時(shí),求sin∠AED的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,P點(diǎn)從點(diǎn)A開始以2厘米/秒的速度沿A→B→C的方向移動(dòng),點(diǎn)Q從點(diǎn)C開始以1厘米/秒的速度沿C→A→B的方向移動(dòng),在直角三角形ABC中,∠A=90°,若AB=16厘米,AC=12厘米,BC=20厘米,如果P、Q同時(shí)出發(fā),用t(秒)表示移動(dòng)時(shí)間,那么:
(1)如圖1,若P在線段AB上運(yùn)動(dòng),Q在線段CA上運(yùn)動(dòng),試求出t為何值時(shí),QA=AP
(2)如圖2,點(diǎn)Q在CA上運(yùn)動(dòng),試求出t為何值時(shí),三角形QAB的面積等于三角形ABC面積的;
(3)如圖3,當(dāng)P點(diǎn)到達(dá)C點(diǎn)時(shí),P、Q兩點(diǎn)都停止運(yùn)動(dòng),試求當(dāng)t為何值時(shí),線段AQ的長(zhǎng)度等于線段BP的長(zhǎng)的
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與CD相交于點(diǎn)O,OE⊥AB,OF⊥CD,OP是∠BOC的平分線.
(1)請(qǐng)寫出圖中所有∠EOC的補(bǔ)角 ____________________;
(2)如果∠POC:∠EOC=2:5.求∠BOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)E,且AC⊥BD,作BF⊥CD,垂足為點(diǎn)F,BF與AC交于點(diǎn)C,∠BGE=∠ADE.
(1)如圖1,求證:AD=CD;
(2)如圖2,BH是△ABE的中線,若AE=2DE,DE=EG,在不添加任何輔助線的情況下,請(qǐng)直接寫出圖2中四個(gè)三角形,使寫出的每個(gè)三角形的面積都等于△ADE面積的2倍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com