【題目】如圖,在⊙O中,AB為直徑,C為⊙O上一點,過點C作⊙O的切線,與AB的延長線相交于點P,若∠CAB=27°,求∠P的大。
【答案】解:連接OC,如圖, ∵OA=OC,
∴∠OCA=∠A=27°,
∴∠POC=∠A+∠OCA=54°,
∵PC為切線,
∴OC⊥PC,
∴∠PCO=90°,
∴∠P=90°﹣∠POC=90°﹣54°=36°.
【解析】連接OC,如圖,先利用等腰三角形的性質(zhì)得到∠OCA=∠A=27°,再根據(jù)三角形外角性質(zhì)得到∠POC=54°,接著根據(jù)切線的性質(zhì)得到∠PCO=90°,然后利用互余計算∠P的度數(shù).
【考點精析】通過靈活運用切線的性質(zhì)定理,掌握切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑即可以解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】探究與發(fā)現(xiàn):
如圖1所示的圖形,像我們常見的學習用品﹣﹣圓規(guī).我們不妨把這樣圖形叫做“規(guī)形圖”,那么在這一個簡單的圖形中,到底隱藏了哪些數(shù)學知識呢?下面就請你發(fā)揮你的聰明才智,解決以下問題:
(1)觀察“規(guī)形圖”,試探究∠BDC與∠A、∠B、∠C之間的關(guān)系,并說明理由;
(2)請你直接利用以上結(jié)論,解決以下三個問題:
①如圖2,把一塊三角尺XYZ放置在△ABC上,使三角尺的兩條直角邊XY、XZ恰好經(jīng)過點B、C,若∠A=50°,則∠ABX+∠ACX=__________°;
②如圖3,DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度數(shù);
③如圖4,∠ABD,∠ACD的10等分線相交于點G1、G2…、G9,若∠BDC=140°,∠BG1C=77°,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】菱形ABCD中,∠B=60°,∠MAN=60°,射線AM交直線BC于點E,射線AN交直線CD于點F,連結(jié)EF,請解答下列問題:
(1)如圖1,求證:EC+FC=AC;
(2)將∠MAN繞點A旋轉(zhuǎn),如圖2,如圖3,請直接寫出線段EC,F(xiàn)C,AC之間的數(shù)量關(guān)系,不需要證明;
(3)若S菱形ABCD=18 ,∠CAE=30°,則CF=
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,A,B為x軸上兩點,C、D為y軸上的兩點,經(jīng)過點A,C,B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封閉曲線成為“蛋線”.已知點C的坐標為(0,﹣ ),點M是拋物線C2:y=mx2﹣2mx﹣3m(m<0)的頂點.
(1)求A、B兩點的坐標;
(2)“蛋線”在第四象限上是否存在一點P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,是邊的中點,以為腰向外作等腰直角三角形,,連接,交于點,交于點,連接.
(1)若,則 ;
(2)求證: ;
(3)若,則 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中的每個小格都是邊長為1個單位長度的正方形,每個小正方形的頂點叫格點,△ABC和△DEF的頂點都在格點上,結(jié)合所給的平面直角坐標系解答下列問題:
(1)畫出△ABC向上平移4個單位長度后所得到的△A1B1C1;
(2)畫出△DEF繞點F按順時針方向旋轉(zhuǎn)90°后所得到的△D1E1F1;
(3)求點D在旋轉(zhuǎn)過程中劃過的路徑長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=﹣ x+1與x軸交于點A,與y軸交于點B,拋物線y=﹣x2+bx+c經(jīng)過A,B兩點.
(1)求拋物線的解析式;
(2)點P是第一象限拋物線上的一點,連接PA、PB、PO,若△POA的面積是△POB面積的 倍.
①求點P的坐標;
②點Q為拋物線對稱軸上一點,請直接寫出QP+QA的最小值;
(3)點M為直線AB上的動點,點N為拋物線上的動點,當以點O、B、M、N為頂點的四邊形是平行四邊形時,請直接寫出點M的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com