【題目】已知AB是⊙O的弦,點P是優(yōu)弧AB上的一個動點,連接AP,過點A作AP的垂線,交PB的延長線于點C.
(1)如圖1,AC與⊙O相交于點D,過點D作⊙O的切線,交PC于點E,若DE∥AB,求證:PA=PB;
(2)如圖2,已知⊙O的半徑為2,AB=2.
①當點P在優(yōu)弧AB上運動時,∠C的度數(shù)為 °;
②當點P在優(yōu)弧AB上運動時,△ABP的面積隨之變化,求△ABP面積的最大值;
③當點P在優(yōu)弧AB上運動時,△ABC的面積隨之變化,△ABC的面積的最大值為 .
【答案】(1)證明見解析;(2)①30;②3;③6+3.
【解析】
(1)根據(jù)90°的圓周角所對的弦是直徑可得PD是直徑,結(jié)合DE是切線,DE∥AB,可得AB⊥PD,利用垂徑定理可證.
(2)①只要求出∠AOB的度數(shù),便可知∠APC的度數(shù),利用∠C和∠APC互余的關(guān)系可得∠C度數(shù);②分析后可以發(fā)現(xiàn):PD⊥AB時面積最大;③利用∠C的數(shù)值不變可知點C在AB為弦的同一個圓上運動,進而找到C點在何處可使得△ABC面積最大,從而求值.
(1)如圖1,連接DP交AB于點F.
∵CA⊥AP,∴DP是⊙O的直徑.
∵DE是⊙O的切線,∴DE⊥DP.
又∵DE∥AB,∴AB⊥DP,∴DP垂直平分AB(垂徑定理),∴PA=PB;
(2)①連接OA、OB,由(1)知,DP垂直平分AB.
∵AB=2,∴AF=BF.
∵⊙O的半徑是2,∴OA=OB=2,∴sin∠AOF,∴∠AOF=60°,∴∠AOB=120°,∴∠APB∠AOB=60°.
∵CA⊥AP,∴∠C+∠APB=90°,∴∠C=30°;
②當點P在優(yōu)弧AB上運動時,△ABP的面積由點P到AB的距離決定.
根據(jù)圖形的性質(zhì)可知:如圖2,當點P運動到PD⊥AB時,PF即是最大距離.
∵OA=2,PD⊥AB,∠AOF=60°,∴OF=1,∴PF=OF+OP=1+2=3,∴△ABP的面積最大值是:ABPF3=3;
③由①知在變化過程中∠ACB=30°恒成立,∴點C在以AB為弦的某個圓上運動,設(shè)這個圓的圓心為H,如圖3所示.
連接AH、BH,∴∠AHB=2∠ACB=60°.
∵AH=BH,∴△ABH是等邊三角形.
∵AB=2,∴⊙H的半徑HA=2,作CG⊥AB,顯然,當C點運動到CG經(jīng)過圓心H時△ABC面積最大.
此時,CG=CH+HG,CH=2.
∵HG⊥AB,AB=2,∴HG=AHsin60°=3,∴CG=23,∴△ABC面積最大值是:
ABCG(23)=6+3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】己知關(guān)于x的一元二次方程x2+(2k+3)x+k2=0有兩個不相等的實數(shù)根x1,x2.
(1)求k的取值范圍;
(2)若=﹣1,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形OABC中,點O為原點,點A的坐標為(0,8),點C的坐標為(6,0).拋物線y=﹣x2+bx+c經(jīng)過點A、C,與AB交于點D.
(1)求拋物線的函數(shù)解析式;
(2)點P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設(shè)CP=m,△CPQ的面積為S.
①求S關(guān)于m的函數(shù)表達式;
②當S最大時,在拋物線y=﹣x2+bx+c的對稱軸l上,若存在點F,使△DFQ為直角三角形,請直接寫出所有符合條件的點F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀探索:“任意給定一個矩形A,是否存在另一個矩形B,它的周長和面積分別是已知矩形周長和面積的一半?”(完成下列空格)
(1)當已知矩形A的邊長分別為6和1時,小亮同學(xué)是這樣研究的:
設(shè)所求矩形的兩邊分別是x和y,由題意得方程組:,消去y化簡得:2x2﹣7x+6=0,
∵△=49﹣48>0,
∴x1=_____,x2=_______,
∴滿足要求的矩形B存在.
(2)如果已知矩形A的邊長分別為2和1,請你仿照小亮的方法研究是否存在滿足要求的矩形B.
(3)如果矩形A的邊長為m和n,請你研究滿足什么條件時,矩形B存在?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在8×8的網(wǎng)格中的每個小正方形邊長都是1,線段交點稱作格點.任意連接這些格點,可得到一些線段.按要求作圖:
(1)請畫出△ABC的高AD;
(2)請連接格點,用一條線段將圖中△ABC分成面積相等的兩部分;
(3)直接寫出△ABC的面積是_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AD邊的中點,BE⊥AC,垂足為點F,連接DF,分析下列四個結(jié)論:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正確的結(jié)論有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:E是∠AOB的平分線上一點,EC⊥OB,ED⊥OA,C、D是垂足,連接CD,且交OE于點F.
(1)求證:OE是CD的垂直平分線.
(2)若∠AOB=60,請你探究OE,EF之間有什么數(shù)量關(guān)系?并證明你的結(jié)論。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC中,∠ACB=90°,AC=BC.
(1)如圖1,點D在BC的延長線上,連AD,過B作BE⊥AD于E,交AC于點F.求證:AD=BF;
(2)如圖2,點D在線段BC上,連AD,過A作AE⊥AD,且AE=AD,連BE交AC于F,連DE,問BD與CF有何數(shù)量關(guān)系,并加以證明;
(3)如圖3,點D在CB延長線上,AE=AD且AE⊥AD,連接BE、AC的延長線交BE于點M,若AC=3MC,請直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,Rt△ABC中,∠ACB=90°,P是邊AB上一點,AD⊥CP,BE⊥CP,垂足分別為D、E,已知AB=3,BC=3,BE=5.求DE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com