已知
x
2
=
y
3
=
z
4
≠0,則
2x+y-z
3x-2y+z
的值為( 。
分析:設(shè)比值為k,然后用k表示出x、y、z,再代入比例式進(jìn)行計(jì)算即可得解.
解答:解:設(shè)
x
2
=
y
3
=
z
4
=k,
則x=2k,y=3k,z=4k,
所以,
2x+y-z
3x-2y+z
=
2•2k+3k-4k
3•2k-2•3k+4k
=
3
4

故選A.
點(diǎn)評(píng):本題考查了比例的性質(zhì),利用“設(shè)k”法k表示出x、y、z可以使計(jì)算更加簡(jiǎn)便.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知
x
2
=
y
3
=
z
4
,則
2x+y-z
3x-2y+z
=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知
x
2
=
y
3
=
z
4
,則
x+3y-z
2x-y+z
的值是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知
x
2
=
y
3
=
z
4
,求分式
4x-3y+5z
2x+3y
=
19
13
19
13

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•金山區(qū)一模)已知
x
2
=
y
3
=
z
4
,(1)求
x-2y
z
的值; (2)若
x+3
=z-y
,求x值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)已知A=2x+y,B=2x-y,計(jì)算A2-B2;
(2)已知
x
2
=
y
3
=
z
4
,求
xy+yz+zx
x2+y2+z2

查看答案和解析>>

同步練習(xí)冊(cè)答案