【題目】如圖,直線ABCD相交于點O,OE平分∠BODOF平分∠COE.∠BOF=30°,求∠BOE的度數(shù).

【答案】40°

【解析】

設∠BOE=x,由角平分線的定義可得:∠DOE=BOE =x,由已知可得:∠EOF=x30°,再根據(jù)角平分線的定義可得:∠COE=2EOF= 2x60°,最后根據(jù)∠DOE+∠COE=180°列方程并解方程即可.

解:設∠BOE=x

OE平分∠BOD,

∠DOE=BOE =x

∵∠BOF=30°

∴∠EOF=BOE+∠BOF=x30°

OF平分∠COE

∴∠COE=2EOF= 2x60°

∠DOE+∠COE=180°

x+(2x60°)=180°

解得:x=40°

即∠BOE=40°

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】高高的路燈掛在路邊的上方,高傲而明亮,小明拿著一根2米長的竹竿,想量一量路燈的高度,直接量是不可能的.于是,他走到路燈旁的一個地方,豎起竹竿(即AE),這時,他量了一下竹竿的影長(AC)正好是1米,他沿著影子的方向走,向遠處走出兩根竹竿的長度(即AB=4米),他又豎起竹竿,這時竹竿的影長正好是一根竹竿的長度(即BD=2米).此時,小明抬頭瞧瞧路燈,若有所思地說:噢,我知道路燈有多高了!同學們,請你和小明一起解答這個問題:

(1)在圖中作出路燈O的位置,并作OP⊥lP.

(2)求出路燈O的高度,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,∠ABC=90°,E是AB上一點,且DE⊥CE.若AD=1,BC=2,CD=3,則CE與DE的數(shù)量關(guān)系正確的是(

A.CE=DE B.CE=DE C.CE=3DE D.CE=2DE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】己知,二次函數(shù)y=﹣x2+bx+c的圖象與x軸的兩個交點A,B的橫坐標分別為12,與y軸的交點是C.

(1)求這個二次函數(shù)的表達式;

(2)若點Dy軸上的一點,是否存在D,使以B,C,D為頂點的三角形與△ABC相似?若存在,求點D的坐標,若不存在,請說明理由;

(3)過點CCE∥x軸,與二次函數(shù)y=﹣x2+bx+c的圖象相交于點E,點H是該二次函數(shù)圖象上的動點,過點HHF∥y軸,交線段BC于點F,試探究當點H運動到何處時,△CHF△HFE的面積之和最大,求點H的坐標及最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)yx+4的圖像與反比例函數(shù)k為常數(shù)且k≠0)的圖像交于A(-1a),Bb,1)兩點,與x軸交于點C

1)求此反比例函數(shù)的表達式;

2)若點Px軸上,且,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某服裝公司招工廣告承諾:熟練工人每月工資至少4000元.每天工作8小時,一個月工作25天.月工資底薪1000元,另加計件工資.加工1A型服裝計酬20元,加工1B型服裝計酬15元.在工作中發(fā)現(xiàn)一名熟練工加工2A型服裝和3B型服裝需7小時,加工1A型服裝和2B型服裝需4小時.(工人月工資=底薪+計件工資)

(1)一名熟練工加工1A型服裝和1B型服裝各需要多少小時?

(2)一段時間后,公司規(guī)定:每名工人每月必須加工AB兩種型號的服裝,且加工A型服裝數(shù)量不少于B型服裝的一半.設一名熟練工人每月加工A型服裝a件,工資總額為W元.請你運用所學知識判斷該公司在執(zhí)行規(guī)定后是否違背了廣告承諾?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩名同學騎自行車從A地出發(fā)沿同一條路前往B地,他們離A地的距離skm)與甲離開A地的時間th)之間的函數(shù)關(guān)系的圖象如圖所示,根據(jù)圖象提供的信息,有下列說法:①甲、乙同學都騎行了18km;②甲、乙同學同時到達B地;③甲停留前、后的騎行速度相同;④乙的騎行速度是;其中正確的說法是(

A. ①③B. ①④C. ②④D. ②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有理數(shù)運算:

(1)13+28+6277

(2)44+(3)×()

(3)12006+[1(222)×3]+(1)2016

(4)(6)×()×(8)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一個有45°角的三角板的直角頂點放在一張寬為3cm的紙帶邊沿上,另一個頂

點在紙帶的另一邊沿上,測得三角板的一邊與紙帶的一邊所在的直線成30°角,如圖(3),

則三角板的最大邊的長為( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案