【題目】兩組鄰邊相等的四邊形叫做箏形”,如圖,四邊形ABCD是一個箏形其中 AB=CB,AD=CD,詹姆斯在探究箏形的性質(zhì)時,得到如下結(jié)論 ACBD;AOCOAC;ABD≌△CBD;④四邊形ABCD的面積=ACBD,其中,正確的結(jié)論有_____.

【答案】①②③④

【解析】

先證明ABDCBD全等,再證明AODCOD全等即可判斷.

ABDCBD中,

∴△ABD≌△CBD(SSS),

故③正確;

∴∠ADB=CDB,

AODCOD中,

,

∴△AOD≌△COD(SAS),

∴∠AOD=COD=90°,AO=OC,

ACDB,

故①②正確;

四邊形ABCD的面積=SADB+SBDC=DB×OA+DB×OC=ACBD,

故④正確;

故答案為①②③④

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1(注:與圖2完全相同),二次函數(shù)y= x2+bx+c的圖象與x軸交于A(3,0),B(﹣1,0)兩點,與y軸交于點C.

(1)求該二次函數(shù)的解析式;
(2)設(shè)該拋物線的頂點為D,求△ACD的面積(請在圖1中探索);
(3)若點P,Q同時從A點出發(fā),都以每秒1個單位長度的速度分別沿AB,AC邊運動,其中一點到達端點時,另一點也隨之停止運動,當P,Q運動到t秒時,△APQ沿PQ所在的直線翻折,點A恰好落在拋物線上E點處,請直接判定此時四邊形APEQ的形狀,并求出E點坐標(請在圖2中探索).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如:3+2=(1+2,善于思考的小明進行了以下探索:

設(shè)a+b=(m+n2(其中a、b、m、n均為整數(shù)),則有a+b=m2+2n2+2mn

∴a=m2+2n2,b=2mn.這樣小明就找到了一種把部分a+b的式子化為平方式的方法.

請你仿照小明的方法探索并解決下列問題:

(1)當a、b、m、n均為正整數(shù)時,若a+b=(m+n2,用含m、n的式子分別表示a、b,得a=   ,b=   ;

(2)試著把7+4化成一個完全平方式.

(3)若a是216的立方根,b是16的平方根,試計算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=2,AO=BO,P是直線CO上的一個動點,∠AOC=60°,當△PAB是以BP為直角邊的直角三角形時,AP的長為( )

A. ,1,2 B. ,,2 C. ,,1 D. ,2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)現(xiàn)有在校學(xué)生2150人,為了解該校學(xué)生的課余活動情況,采取隨機抽樣的方法從閱讀、運動、娛樂、其它四個方面調(diào)查了若干名學(xué)生,并將調(diào)查的結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答下列問題:

(1)本次調(diào)查共抽取了多少名學(xué)生?

(2)通過計算補全條形圖,并求出扇形統(tǒng)計圖中閱讀部分圓心角的度數(shù);

(3)請你估計該中學(xué)在課余時間參加閱讀和其它活動的學(xué)生一共有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平面內(nèi)有兩條直線AB、CD,且AB∥CD,P為一動點.
(1)當點P移動到AB、CD之間時,如圖(1),這時∠P與∠A、∠C有怎樣的關(guān)系?證明你的結(jié)論;
(2)當點P移動到圖(2)、圖(3)的位置時,∠P、∠A、∠C又有怎樣的關(guān)系?請分別寫出你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一條筆直的公路上有A、B、C三地,A地在BC兩地之間.甲、乙兩輛汽車分別從B、C兩地同時出發(fā),沿這條公路勻速相向行駛甲勻速行駛1小時到達A地后繼續(xù)以相同的速度向C處行駛,到達C后停止,乙勻速行駛1.2小時后到達A地并停止運動,甲、乙兩車離A地的距離y1、y2(千米)與行駛時間x(時)的函數(shù)關(guān)系如圖所示.

(1)BC的距離為 km

求線段MN的函數(shù)表達式;

求點P的坐標,并說明點P的實際意義;

出發(fā)多長時間后,乙相距60km?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖放置的兩個正方形,大正方形ABCD邊長為a,小正方形CEFG邊長為b(a>b),M在BC邊上,且BM=b,連接AM,MF,MF交CG于點P,將△ABM繞點A旋轉(zhuǎn)至△ADN,將△MEF繞點F旋轉(zhuǎn)至△NGF,給出以下五個結(jié)論:①∠MAD=∠AND;②CP=b﹣ ;③△ABM≌△NGF;④S四邊形AMFN=a2+b2;⑤A,M,P,D四點共圓,其中正確的個數(shù)是( )

A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,∠ABC=90°,在直線AB上取一點M,使AM=BC,過點AAEABAE=BM,連接EC,再過點AANEC,交直線CM、CB于點F、N.

(1)如圖1,若點M在線段AB邊上時,求∠AFM的度數(shù);

(2)如圖2,若點M在線段BA的延長線上時,且∠CMB=15°,求∠AFM的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案