精英家教網 > 初中數學 > 題目詳情

如圖,△ABC的面積為1.分別倍長(延長一倍)AB,BC,CA得到△A1B1C1.再分別倍長A1B1,B1C1,C1A1得到△A2B2C2.…按此規(guī)律,倍長n次后得到的△AnBnCn的面積為         

 

【答案】

【解析】

試題分析:先根據圖形特征找出延長各邊后得到的三角形的面積是原三角形的面積的倍數的規(guī)律,再利用發(fā)現的規(guī)律求延長第n次后的面積.

△AA1C=3△ABC=3,

△AA1C1=2△AA1C=6,

所以△A1B1C1=6×3+1=19;

同理得△A2B2C2=19×19=361;

△A3B3C3=361×19=6859,

△A4B4C4=6859×19=130321,

△A5B5C5=130321×19=2476099,

從中可以得出一個規(guī)律,延長各邊后得到的三角形是原三角形的19倍,所以延長第n次后,得到△AnBnCn,

則其面積為

考點:找規(guī)律-圖形的變化

點評:解題的關鍵是仔細分析所給圖形的特征得到規(guī)律,再把這個規(guī)律應用于解題.

 

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,△ABC的面積是63,D是BC上的一點,且BD:CD=2:1,DE∥AC交AB于E,延長DE到F,使FE:ED=2:1,則△CDF的面積是
 

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,△ABC的面積為1,分別取AC、BC兩邊的中點A1、B1,則四邊形A1ABB1的面積為
 
,再分別取A1C、B1C的中點A2、B2,A2C、B2C的中點A3、B3,依次取下去….利用這一圖形,能直觀地計算出
3
4
+
3
42
+
3
43
+…+
3
4n
=
 

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,△ABC的面積為
2
,且AB=AC,將△ABC沿CA方向平移CA長度得到△EFA.
(1)試判斷四邊形BAEF的形狀,并說明理由;
(2)若∠BEC=22.5°,求AC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

3、如圖,△ABC的面積為1,若把△ABC的各邊分別延長一倍,得到一個新的△DEF,則S△DEF=
7

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,△ABC的面積為1.第一次操作:分別延長AB,BC,CA至點A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,順次連結A1,B1,C1,得到△A1B1C1.第二次操作:分別延長A1B1,B1C1,C1A1至點A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,順次連結A2,B2,C2,得到△A2B2C2.…按此規(guī)律,要使得到的三角形的面積超過2013,最少經過
4
4
次操作.

查看答案和解析>>

同步練習冊答案