【題目】如圖,在⊙O 中,BC是弦,OA⊥BC于點E,D為⊙O上一點,連接AD,CD.
(1)求證:∠AOB=2∠ADC;
(2)若OB⊥CD,CD=8,OE=,求tan∠ADC.
【答案】(1)證明見解析(2)
【解析】(1)連接OC.由垂徑定理得∠AOC=∠AOB.再由圓周角定理即可得到結(jié)論;
(2)延長BO交CD于點F,連接AB.由垂徑定理得到CF的長.由∠EBO=∠FBC,∠CFB=∠OEB,得到 △ABE∽△DFC,由相似三角形對應(yīng)邊成比例得到.設(shè)BE=,則BF=4n,BC=,由勾股定理得CF=,由2n=4,得到n,BE,
BO,AE的長,由tan∠ADC=tan∠ABE即可得到結(jié)論.
(1)連接OC.
∵OA⊥BC,∴弧AC=弧AB,∴∠AOC=∠AOB.
∵∠AOC=2∠ADC,∴∠AOB=2∠ADC .
(2)延長BO交CD于點F,連接AB.
∵OB⊥CD,∴CF=CD=4.
∵∠EBO=∠FBC,∠CFB=∠OEB,
∴ △ABE∽△DFC,∴.
設(shè)BE=,則BF=4n,BC=,
∴CF=,∴2n=4,n=2,∴BE==,
∴BO=5,AE=,∴tan∠ADC=tan∠ABE=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,六邊ABCDEF中,AB平行且等于ED,AF平行且等于CD,BC平行且等于FE,對角線FD⊥BD.已知FD=24,BD=18.則六邊形ABCDEF的面積是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,E是AD的中點,延長CE,BA交于點F,連接AC,DF.
(1)求證:四邊形ACDF是平行四邊形;
(2)當(dāng)CF平分∠BCD時,寫出BC與CD的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,BC=5,AC=12,I是Rt△ABC的內(nèi)心,連接CI,AI,則△CIA外接圓的半徑為()
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,DE=2AE=4, F是BE的中點,點H在CD上,∠EFH=45°,則FH的長度為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線與x軸交于A,B兩點(點A在點B的左邊),與y軸正半軸交于點C.
(1)如圖1,若A(-1,0),B(3,0),
① 求拋物線的解析式;
② P為拋物線上一點,連接AC,PC,若∠PCO=3∠ACO,求點P的橫坐標(biāo);
(2)如圖2,D為x軸下方拋物線上一點,連DA,DB,若∠BDA+2∠BAD=90°,求點D的縱坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB,CD交于點O,OE平分,OF是的角平分線.
(1)說明: ;
(2)若,求的度數(shù);
(3)若,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是邊長為的正方形薄鐵片,小明將其四角各剪去一個相同的小正方形(圖中陰影部分)后,發(fā)現(xiàn)剩余的部分能折成一個無蓋的長方體盒子,圖2為盒子的示意圖(鐵片的厚度忽略不計).
(1)設(shè)剪去的小正方形的邊長為,折成的長方體盒子的容積為,直接寫出用只含字母的式子表示這個盒子的高為______,底面積為______,盒子的容積為______,
(2)為探究盒子的體積與剪去的小正方形的邊長之間的關(guān)系,小明列表
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
324 | 588 | 576 | 500 | 252 | 128 |
填空:①______,______;
②由表格中的數(shù)據(jù)觀察可知當(dāng)的值逐漸增大時,的值______.(從“逐漸增大”,“逐漸減小”“先增大后減小”,“先減小后增大”中選一個進(jìn)行填空)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com