精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知AB為半圓O的直徑,C為半圓O上一點,連接AC,BC,過點O作OD⊥AC于點D,過點A作半圓O的切線交OD的延長線于點E,連接BD并延長交AE于點F.

(1)求證:AEBC=ADAB;
(2)若半圓O的直徑為10,sin∠BAC= ,求AF的長.

【答案】
(1)

證明:∵AB為半圓O的直徑,

∴∠C=90°,

∵OD⊥AC,

∴∠CAB+∠AOE=90°,∠ADE=∠C=90°,

∵AE是切線,

∴OA⊥AE,

∴∠E+∠AOE=90°,

∴∠E=∠CAB,

∴△EAD∽△ABC,

∴AE:AB=AD:BC,

∴AEBC=ADAB.


(2)

解:

作DM⊥AB于M,

∵半圓O的直徑為10,sin∠BAC= ,

∴BC=ABsin∠BAC=6,

∴AC= =8,

∵OE⊥AC,

∴AD= AC=4,OD= BC=3,

∵sin∠MAD= = ,

∴DM= ,AM= = = ,BM=AB﹣AM= ,

∵DM∥AE,

,

∴AF=


【解析】(1)只要證明△EAD∽△ABC即可解決問題.(2)作DM⊥AB于M,利用DM∥AE,得 求出DM、BM即可解決問題.本題考查切線的性質、勾股定理、三角函數、平行線分線段成比例定理、相似三角形的判定和性質等知識,解題的關鍵是正確尋找相似三角形,學會添加常用輔助線,屬于中考?碱}型.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點P是弦AC上一動點(不與A,C重合),過點P作PE⊥AB,垂足為E,射線EP交 于點F,交過點C的切線于點D.

(1)求證:DC=DP;
(2)若∠CAB=30°,當F是 的中點時,判斷以A,O,C,F為頂點的四邊形是什么特殊四邊形?說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校男子足球隊的年齡分布如圖所示,則根據圖中信息可知這些隊員年齡的平均數,中位數分別是( 。
A.15.5,15.5
B.15.5,15
C.15,15.5
D.15,15

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,⊙O的半徑為4,△ABC是⊙O的內接三角形,連接OB、OC.若∠BAC與∠BOC互補,則弦BC的長為( )

A.3
B.4
C.5
D.6

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在直角坐標系中,點A,B分別在x軸,y軸上,點A的坐標為(﹣1,0),∠ABO=30°,線段PQ的端點P從點O出發(fā),沿△OBA的邊按O→B→A→O運動一周,同時另一端點Q隨之在x軸的非負半軸上運動,如果PQ= ,那么當點P運動一周時,點Q運動的總路程為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖是某工件的三視圖,則此工件的表面積為( 。
A.15πcm2
B.51πcm2
C.66πcm2
D.24πcm2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】設(2y﹣z):(z+2x):y=1:5:2,則(3y﹣z):(2z﹣x):(x+3y)=(  )
A.1:5:7
B.3:5:7
C.3:5:8
D.2:5:8

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知:Rt△ACB,BC=3,AC=4,延長BC至D,使得△ABD為等腰三角形,求CD的長。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在梯形ABCD中,AB∥CD,∠B=90°,AB=2,CD=1,BC=m,P為線段BC上的一動點,且和B、C不重合,連接PA,過P作PE⊥PA交CD所在直線于E.設BP=x,CE=y.

(1)求y與x的函數關系式;
(2)若點P在線段BC上運動時,點E總在線段CD上,求m的取值范圍;
(3)如圖2,若m=4,將△PEC沿PE翻折至△PEG位置,∠BAG=90°,求BP長.

查看答案和解析>>

同步練習冊答案