【題目】如圖,ABC中,BC=10AC-AB=4AD是∠BAC的角平分線,CDAD,則SBDC的最大值為(

A.40B.28C.20D.10

【答案】D

【解析】

如圖,延長ABCD交于E,由AD是角平分線可得∠EAD=CAD,利用SAS可證明△EAD≌△CAD,可得AC=AECD=DE,可得SBDC=SBEC,根據(jù)AC-AB=4可得BE=4,當BEBC時,△BEC的面積最大,即可得△BDC的面積.

如圖,延長ABCD交于E,

AD是∠BAC的角平分線,CDAD,

∴∠EAD=CAD,∠ADE=ADC=90°

在△EAD和△CAD中,

∴△EAD≌△CAD,

AC=AECD=DE,

SBDC=SBEC

AC-AB=4,

AE-AB=4,即BE=4,

BEBC時△BEC的面積最大,即△BDC的面積最大,

SBDC=×BC·BE=××10×4=10

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若等腰三角形腰長為2,有一個內(nèi)角為80°,則它的底邊長上的高為__.(精確到0.01,參考數(shù)據(jù):sin50°≈0.766;sin80°≈0.985)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某木板加工廠將購進的A型、B型兩種木板加工成C型,D型兩種木板出售,已知一塊A型木板的進價比一塊B型木板的進價少10元,且購買3A型木板和2B型木板共花費120元.

1A型木板與B型木板的進價各是多少元?

2)根據(jù)市場需求,該木板加工廠決定用不超過2770元購進A型木板、B型木板共100塊,若一塊A型木板可制成1C型木板、2D型木板;一塊B型木板可制成2C型木板、1D型木板,且生產(chǎn)出來的C型木板數(shù)量不少于D型木板的數(shù)量的7/5

①該木板加工廠有幾種進貨方案?

②若C型木板每塊售價30元,D型木板每塊售價25元,且生產(chǎn)出來的C型木板、D型木板全部售出,哪一種方案獲得的利潤最大,求出最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀以下材料:
對數(shù)的創(chuàng)始人是蘇格蘭數(shù)學(xué)家納皮爾(JNplcr,1550-1617年),納皮爾發(fā)明對數(shù)是在指數(shù)書寫方式之前,直到18世紀瑞士數(shù)學(xué)家歐拉(Evlcr1707-1783年)才發(fā)現(xiàn)指數(shù)與對數(shù)之間的聯(lián)系.
對數(shù)的定義:一般地,若ax=Na0,a≠1),那么x叫做以a為底N的對數(shù),記作:x=logaN.比如指數(shù)式24=16可以轉(zhuǎn)化為4=log216,對數(shù)式2=log525可以轉(zhuǎn)化為52=25
我們根據(jù)對數(shù)的定義可得到對數(shù)的一個性質(zhì):logaMN=logaM+logaNa0,a≠1,M0N0);理由如下:
設(shè)logaM=m,logaN=n,則M=amN=an
MN=aman=am+n,由對數(shù)的定義得m+n=logaMN
又∵m+n=logaM+logaN
logaMN=logaM+logaN
解決以下問題:

1)將指數(shù)43=64轉(zhuǎn)化為對數(shù)式: .

(2)仿照上面的材料,試證明: =(a>0,al,M>0N>0).

3 拓展運用:計算log32+log36-log34=____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,AOP為等邊三角形,A(0,2),點By軸上一動點,以BP為邊作等邊PBC,延長CAx軸于點E.

(1)求證:OBAC;

(2)CAP的度數(shù)是;

(3)B點運動時,猜想AE的長度是否發(fā)生變化?并說明理由;

(4)(3)的條件下,在y軸上存在點Q,使得AEQ為等腰三角形,請寫出點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠ABC=90°,AC=AD,M,N分別為AC,CD的中點,連接BM,MN,BN.BAD=60°,AC平分∠BAD,AC=2,BN的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛汽車和一輛摩托車分別從,兩地去同一城市,它們離地的路程隨時間變化的圖象如圖所示,根據(jù)圖象中的信息解答以下問題:

1,兩地相距______;

2)分別求出摩托車和汽車的行駛速度;

3)若兩圖象的交點為,求點的坐標,并指出點的實際意義.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文化用品商店用1 000元購進一批晨光套尺,很快銷售一空;商店又用1 500元購進第二批該款套尺,購進時單價是第一批的倍,所購數(shù)量比第一批多100套.

1)求第一批套尺購進時單價是多少?

2)若商店以每套4元的價格將這兩批套尺全部售出,可以盈利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,ABC=30°,CDE是等邊三角形,點D在邊AB上.

(1)如圖1,當點E在邊BC上時,求證DE=EB;

(2)如圖2,當點E在△ABC內(nèi)部時,猜想EDEB數(shù)量關(guān)系,并加以證明;

(3)如圖3,當點E在△ABC外部時,EHAB于點H,過點EGEAB,交線段AC的延長線于點G,AG=5CG,BH=3.求CG的長.

查看答案和解析>>

同步練習(xí)冊答案