【題目】正方形ABCD、正方形BEFG,點(diǎn)A、B、E在半圓O的直徑上,點(diǎn)D、C、F在半圓O上,若EF=4,則該半圓的半徑為( 。
A.B.8C.D.
【答案】A
【解析】
先根據(jù)正方形的性質(zhì)得CB=AB,AB=2OB=2OA,設(shè)OB=x,則OE=x+4,BC=2x,再根據(jù)勾股定理,在Rt△COB中有OC2=OB2+CB2=5x2,在Rt△OEF中有OF2=OE2+EF2=(x+4)2+42,則(x+4)2+42=5x2,然后解方程得到x=4,再利用CO=x進(jìn)行計(jì)算即可.
解:如圖,連接OD、OC、OF,
∵四邊形ABCD為正方形,
∴CB=AB,AB=2OB=2OA,
設(shè)OB=x,則OE=x+4,CB=2x,
在Rt△CBO中,OC2=OB2+CB2=x2+(2x)2=5x2,
在Rt△OEF中有OF2=OE2+EF2=(x+4)2+42,
而OC=OF,
∴(x+4)2+42=5x2,
整理得x2﹣2x﹣8=0,
解得x1=4,x2=﹣2(舍去),
∴OC=x=4,
即該圓的半徑為4.
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將邊長(zhǎng)為6的正方形沿其對(duì)角線剪開(kāi),再把沿著方向平移,得到,當(dāng)兩個(gè)三角形重疊部分的面積為5時(shí),則為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線的解析表達(dá)式為,且與軸交于點(diǎn),直線經(jīng)過(guò)點(diǎn),直線,交于點(diǎn).
(1)求點(diǎn)的坐標(biāo);
(2)求直線的解析表達(dá)式;
(3)求的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,,是線段上的兩個(gè)動(dòng)點(diǎn),且,過(guò)點(diǎn),分別作,的垂線相交于點(diǎn),垂足分別為,.有以下結(jié)論:①;②當(dāng)點(diǎn)與點(diǎn)重合時(shí),;③;④.其中正確的結(jié)論有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)選拔一名青年志愿者:經(jīng)筆試、面試,結(jié)果小明和小麗并列第一.評(píng)委會(huì)決定通過(guò)抓球來(lái)確定人選.規(guī)則如下:在不透明的布袋里裝有除顏色之外均相同的2個(gè)紅球和1個(gè)綠球,小明先取出一個(gè)球,記住顏色后放回,然后小麗再取出一個(gè)球.若兩次取出的球都是紅球,則小明勝出;若兩次取出的球是一紅一綠,則小麗勝出.你認(rèn)為這個(gè)規(guī)則對(duì)雙方公平嗎?請(qǐng)用列表法或畫樹狀圖的方法進(jìn)行分析.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD,∠D=60°,△ABC內(nèi)接于⊙O,⊙O的直徑AE交BC于F,DC的延長(zhǎng)線交AE的延長(zhǎng)線于點(diǎn)G.
(1)求證:DG與⊙O相切;
(2)連接DF,求tan∠FDC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將直尺擺放在三角板上,使直尺與三角板的邊分別交于點(diǎn)D、E、F、G,如圖①所示.已知∠CGD=42.
(1)求∠CEF的度數(shù).
(2)將直尺向下平移,使直尺的邊緣通過(guò)點(diǎn)B,交AC于點(diǎn)H,如圖②所示.點(diǎn)H、B的讀數(shù)分別為4、13.4,求BC的長(zhǎng)(精確到0.1)(參考數(shù)據(jù):sin42°=0.67,cos42°=0.74,tan42°=0.90)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,以為直徑作半圓,半徑繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,點(diǎn)的對(duì)應(yīng)點(diǎn)為,當(dāng)點(diǎn)與點(diǎn)重合時(shí)停止.連接并延長(zhǎng)到點(diǎn),使得,過(guò)點(diǎn)作于點(diǎn),連接,.
(1)______;
(2)如圖,當(dāng)點(diǎn)與點(diǎn)重合時(shí),判斷的形狀,并說(shuō)明理由;
(3)如圖,當(dāng)時(shí),求的長(zhǎng);
(4)如圖,若點(diǎn)是線段上一點(diǎn),連接,當(dāng)與半圓相切時(shí),直接寫出直線與的位置關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E為AB的中點(diǎn),
(1)求證:AC2=ABAD.
(2)求證:CE∥AD;
(3)若AD=4,AB=6,求AF的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com