【題目】感知:
如圖①,AD平分∠BAC,∠B+∠C=180°,∠B=90°.判斷DB與DC的大小關(guān)系并證明.
探究:
如圖②,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,DB與DC的大小關(guān)系變嗎?請說明理由.
應(yīng)用:
如圖③,四邊形ABDC中,∠B=45°,∠C=135°,DB=DC=a,則AB﹣AC= .(用含a的代數(shù)式表示)
【答案】感知:BD=DC;探究:見解析;應(yīng)用:a.
【解析】
感知:判斷出△ADC≌△ADB,即可得出結(jié)論;探究:欲證明DB=DC,只要證明△DFC≌△DEB即可.應(yīng)用:先證明△DFC≌△DEB,再證明△ADF≌△ADE,結(jié)合BD=EB即可解決問題.
感知:解:BD=DC,
理由:∵AD平分∠BAC,
∴∠DAC=∠DAB,
∵∠B+∠C=180°,∠B=90°,
∴∠C=90°=∠B,
在△ADC和△ADB中,,
∴△ADC≌△ADB(AAS),
∴BD=DC;
探究:
證明:如圖②中,DE⊥AB于E,DF⊥AC于F,
∵DA平分∠BAC,DE⊥AB,DF⊥AC,
∴DE=DF,
∵∠B+∠ACD=180°,∠ACD+∠FCD=180°,
∴∠B=∠FCD,
在△DFC和△DEB中,
∴△DFC≌△DEB,
∴DC=DB;
應(yīng)用:
解;如圖③連接AD、DE⊥AB于E,DF⊥AC于F,
∵∠B+∠ACD=180°,∠ACD+∠FCD=180°,
∴∠B=∠FCD,
在△DFC和△DEB中,
∴△DFC≌△DEB,
∴DF=DE,CF=BE,
在Rt△ADF和Rt△ADE中,
∴Rt△ADF≌Rt△ADE,
∴AF=AE,
∴AB﹣AC=(AE+BE)﹣(AF﹣CF)=2BE,
在Rt△DEB中,∵∠DEB=90°,∠B=∠EDB=45°,BD=a,
∴BE=BD=a,
∴AB﹣AC=2BE=a.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“小組合作制”正在七年級如火如茶地開展,旨在培養(yǎng)七年級學(xué)生的合作學(xué)習(xí)的精神和能力,學(xué)會在合作中自主探索.?dāng)?shù)學(xué)課上,吳老師在講授“角平分線”時,設(shè)計了如下四種教學(xué)方法:①教師講授,學(xué)生練習(xí);②學(xué)生合作交流,探索規(guī)律;③教師引導(dǎo)學(xué)生總結(jié)規(guī)律,學(xué)生練習(xí);④教師引導(dǎo)學(xué)生總結(jié)規(guī)律,學(xué)生合作交流,吳老師將上述教學(xué)方法作為調(diào)研內(nèi)容發(fā)到七年級所有同學(xué)手中要求每位同學(xué)選出自己最喜歡的一種,然后吳老師從所有調(diào)查問卷中隨機(jī)抽取了若干份調(diào)查問卷作為樣本,統(tǒng)計如下:
序號①②③④代表上述四種教學(xué)方法,圖二中,表示①部分的扇形的中心角度數(shù)為36°,請回答問題:
(1)在后來的抽樣調(diào)查中,吳老師共抽取 位學(xué)生進(jìn)行調(diào)查;并將條形統(tǒng)計圖補(bǔ)充完整;
(2)圖二中,表示③部分的扇形的中心角為多少度?
(3)若七年級學(xué)生中選擇④種教學(xué)方法的有540人,請估計七年級總?cè)藬?shù)約為多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】乘法公式的探究及應(yīng)用.
數(shù)學(xué)活動課上,老師準(zhǔn)備了若干個如圖1的三種紙片,A種紙片邊長為a的正方形,B種紙片是邊長為b的正方形,C種紙片長為a、寬為b的長方形,并用A種紙片一張,B種紙片一張,C種紙片兩張拼成如圖2的大正方形.
(1)請用兩種不同的方法求圖2大正方形的面積.方法1:______;方法2:_______.
(2)觀察圖2,請你寫出下列三個代數(shù)式:(a+b)2,a2+b2,ab之間的等量關(guān)系._______;
(3)類似的,請你用圖1中的三種紙片拼一個使長方形面積為:3a2+7ab+2b2,并對3a2+7ab+2b2因式分解為_______.
(4)根據(jù)(2)題中的等量關(guān)系,解決如下問題:
①已知:a+b=5,a2+b2=11,求ab的值;
②已知(x﹣2016)2+(x﹣2018)2=34,求(x﹣2017)2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形網(wǎng)格中,每個小正方形的邊長均為1個單位長度,△ABC的三個頂點的位置如圖所示.現(xiàn)將△ABC沿著點A到點D的方向平移,使點A變換為點D,點E、F分別是B、C的對應(yīng)點.
(1)畫出△ABC中AB邊上的高CH;(提醒:別忘了標(biāo)注字母);
(2)請畫出平移后的△DEF;
(3)平移后,線段AB掃過的部分所組成的封閉圖形的面積是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司欲招聘一名部門經(jīng)理,對甲、乙、丙三名候選人進(jìn)行了三項素質(zhì)測試.各項測試成績?nèi)绫砀袼荆?/span>
測試項目 | 測試成績 | ||
甲 | 乙 | 丙 | |
專業(yè)知識 | 74 | 87 | 90 |
語言能力 | 58 | 74 | 70 |
綜合素質(zhì) | 87 | 43 | 50 |
(1)如果根據(jù)三次測試的平均成績確定人選,那么誰將被錄用?
(2)根據(jù)實際需要,公司將專業(yè)知識、語言能力和綜合素質(zhì)三項測試得分按4:3:1的比例確定每個人的測試總成績,此時誰將被錄用?
(3)請重新設(shè)計專業(yè)知識、語言能力和綜合素質(zhì)三項測試得分的比例來確定每個人的測試總成績,使得乙被錄用,若重新設(shè)計的比例為x:y:1,且x+y+1=10,則x= ,y= .(寫出x與y的一組整數(shù)值即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某汽車制造廠開發(fā)了一款新式電動汽車,計劃一年生產(chǎn)安裝240輛。由于抽調(diào)不出足夠的熟練工來完成新式電動汽車的安裝,工廠決定招聘一些新工人:他們經(jīng)過培訓(xùn)后上崗,也能獨立進(jìn)行電動汽車的安裝。生產(chǎn)開始后,調(diào)研部門發(fā)現(xiàn):1名熟練工和2名新工人每月可安裝8輛電動汽車;2名熟練工和3名新工人每月可安裝14輛電動汽車。
(1)每名熟練工和新工人每月分別可以安裝多少輛電動汽車?
(2)如果工廠招聘新工人若干名(新工人人數(shù)少于10人)和抽調(diào)的熟練工合作,剛好能完成一年的安裝任務(wù),那么工廠有哪幾種新工人的招聘方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司為獎勵在趣味運動會上取得好成績的員工,計劃購買甲、乙兩種獎品共20件.其中甲種獎品每件40元,乙種獎品每件30元
(1)如果購買甲、乙兩種獎品共花費了650元,求甲、乙兩種獎品各購買了多少件?
(2)如果購買乙種獎品的件數(shù)不超過甲種獎品件數(shù)的2倍,總花費不超過680元,求該公司有哪幾種不同的購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,將△ABC繞點A順時針旋轉(zhuǎn)90°后得到△AB′C′(點B的對應(yīng)點是點B′,點C的對應(yīng)點是點C′,連接CC′.若∠CC′B′=32°,則∠B的大小是( )
A.32°
B.64°
C.77°
D.87°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E、F分別在AD、BC邊上,且AE=CF.
求證:(1)△ABE≌△CDF;
(2)四邊形BFDE是平行四邊形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com