精英家教網 > 初中數學 > 題目詳情
8.已知2x+3y-4=0,則9x•27y的值為81.

分析 由2x+3y-4=0,可求得2x+3y=4,然后由冪的乘方與同底數冪的乘法,可得9x•27y=32x+3y,繼而求得答案.

解答 解:∵2x+3y-4=0,
∴2x+3y=4,
∴9x•27y=32x•33y=32x+3y=34=81.
故答案為:81.

點評 此題考查了冪的乘方與同底數冪的乘法.注意掌握指數的變化是解此題的關鍵.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:解答題

5.如圖1,是拋物線y=ax2+bx+c(a≠0)圖象的一部分,已知拋物線的對稱軸為直線x=2,與x軸的一個交點是(-1,0);
(1)補充完下列結論:abc>0;4a-2b+c>0;b2-4ac>0
(2)如圖2,當a=1時,一次函數y=2x-5與y=x2+bx+c交于A、C兩點,求不等式
2x-5>x2+bx+c的解集.
(3)拋物線的對稱軸上是否存在點P,使得PB+PC的值最小?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

19.如圖1,△EAB和△EDC均為等腰直角三角形,B、C、E三點在同一直線上,且$\frac{CE}{BE}=\frac{1}{2}$,BC=6,在圖1中,以點E為位似中心,在△EAB內作△EGF與△EAB位似,相似比是1:k(k≠1),點H是邊CE上一動點(不與點C、點E重合),連接GH,HD,如圖2.
(1)若k=2時,求證:△EGF≌△EDC;
(2)若k=4時,是否存在點H使得△HGF和△CDH相似?如果存在,求出CH的值;如果不存在,請說明理由;
(3)如果△HGF和△CDH相似,求出k的取值應該滿足的條件.

查看答案和解析>>

科目:初中數學 來源: 題型:選擇題

16.已知二次函數y=ax2+bx+c的圖象如圖,其對稱軸x=-1,給出下列結果:①b2>4ac;②abc>0;③2a+b=0;④a-b+c<0;⑤3a+c>0;則正確的結論是
(  )
A.①②⑤B.③④⑤C.②③④D.①④⑤

查看答案和解析>>

科目:初中數學 來源: 題型:選擇題

3.下列計算正確的是( 。
A.3a3-2a2=aB.(a+b)2=a2+b2C.a6b÷a2=a3bD.(-ab32=a2b6

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

13.請你觀察:$\frac{1}{1×2}$=$\frac{1}{1}$-$\frac{1}{2}$;$\frac{1}{2×3}$=$\frac{1}{2}$-$\frac{1}{3}$;$\frac{1}{3×4}$=$\frac{1}{3}$-$\frac{1}{4}$;…
$\frac{1}{1×2}$+$\frac{1}{2×3}$=$\frac{1}{1}$-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$=1-$\frac{1}{3}$=$\frac{2}{3}$;
$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$=$\frac{1}{1}$-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$=1-$\frac{1}{4}$=$\frac{3}{4}$;…
從上述運算得到啟發(fā),請你填空:
$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+$\frac{1}{4×5}$=$\frac{4}{5}$;
$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+$\frac{1}{4×5}$+…+$\frac{1}{2015×2016}$=$\frac{2015}{2016}$.
理解以上方法的真正含義,計算:
$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$+…+$\frac{1}{97×99}$.

查看答案和解析>>

科目:初中數學 來源: 題型:選擇題

20.將0.00005用科學記數法表示應為( 。
A.5×10-4B.5×10-5C.5×10-6D.0.5×10-4

查看答案和解析>>

科目:初中數學 來源: 題型:填空題

17.一塊手表,早上8點20分時的時針、分針所成的角的度數是130°.

查看答案和解析>>

科目:初中數學 來源: 題型:填空題

18.關于x的方程ax2-3x+3=0是一元二次方程,則a的取值范圍是a≠0.

查看答案和解析>>

同步練習冊答案