【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)(a,b為常數(shù),且)與反比例函數(shù)(m為常數(shù),且)的圖象交于點(diǎn)A(﹣2,1)、B(1,n).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)連結(jié)OA、OB,求△AOB的面積;
(3)直接寫出當(dāng)時(shí),自變量x的取值范圍.
【答案】(1),;(2)2;(3).
【解析】
(1)將A坐標(biāo)代入反比例函數(shù)解析式中求出m的值,即可確定出反比例函數(shù)解析式;將B坐標(biāo)代入反比例解析式中求出n的值,確定出B坐標(biāo),將A與B坐標(biāo)代入一次函數(shù)解析式中求出a與b的值,即可確定出一次函數(shù)解析式;
(2)設(shè)直線AB與y軸交于點(diǎn)C,求得點(diǎn)C坐標(biāo),,計(jì)算即可;
(3)由圖象直接可得自變量x的取值范圍.
(1)∵A(﹣2,1),
∴將A坐標(biāo)代入反比例函數(shù)解析式中,得,
∴反比例函數(shù)解析式為,
將B坐標(biāo)代入,得,
∴B坐標(biāo)(1,﹣2),將A與B坐標(biāo)代入一次函數(shù)解析式中,得:,解得,
∴一次函數(shù)解析式為;
(2)設(shè)直線AB與y軸交于點(diǎn)C,令x=0,得y=﹣1,
∴點(diǎn)C坐標(biāo)(0,﹣1),
∵==2;
(3)由圖象可得,當(dāng)時(shí),自變量x的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)今,越來越多的青少年在觀看影片《流浪地球》后,更加喜歡同名科幻小說,該小說銷量也急劇上升.書店為滿足廣大顧客需求,訂購該科幻小說若干本,每本進(jìn)價(jià)為20元.根據(jù)以往經(jīng)驗(yàn):當(dāng)銷售單價(jià)是25元時(shí),每天的銷售量是250本;銷售單價(jià)每上漲1元,每天的銷售量就減少10本,書店要求每本書的利潤不低于10元且不高于18元.
(1)直接寫出書店銷售該科幻小說時(shí)每天的銷售量(本)與銷售單價(jià)(元)之間的函數(shù)關(guān)系式及自變量的取值范圍.
(2)書店決定每銷售1本該科幻小說,就捐贈(zèng)元給困難職工,每天扣除捐贈(zèng)后可獲得最大利潤為1960元,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車分別從A,B兩地相向勻速行駛,甲車先出發(fā)兩小時(shí),甲車到達(dá)B地后立即調(diào)頭,并保持原速度與乙車同向行駛,乙車到達(dá)A地后,繼續(xù)保持原速向遠(yuǎn)離B的方向行駛,經(jīng)過一段時(shí)間后兩車同時(shí)到達(dá)C地,設(shè)兩車之間的距離為y(干米),甲車行駛的時(shí)間為x小時(shí),y與x之間的函數(shù)圖象如圖所示,則當(dāng)甲車重返A地時(shí),乙車距離C地________千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O在線段AB上,AO=2,OB=1,OC為射線,且∠BOC=60°,動(dòng)點(diǎn)P以每秒2個(gè)單位長度的速度從點(diǎn)O出發(fā),沿射線OC做勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.當(dāng)△ABP是直角三角形時(shí),t的值為( 。
A. B. C. 1或 D. 1或
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知BD:OD=2:1,點(diǎn)C在射線OF上,OC=12.點(diǎn)M是∠EOF內(nèi)一點(diǎn),MC⊥OF于點(diǎn)C,MC=4.在射線CF上取一點(diǎn)A,連結(jié)AM并延長交射線OE于點(diǎn)B,作BD⊥OF于點(diǎn)D.
(1)當(dāng)AC的長度為多少時(shí),△AMC和△BOD相似;
(2)當(dāng)點(diǎn)M恰好是線段AB中點(diǎn)時(shí),試判斷△AOB的形狀,并說明理由;
(3)連結(jié)BC.當(dāng)S△AMC=S△BOC時(shí),求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)某學(xué)校“智慧方園”數(shù)學(xué)社團(tuán)遇到這樣一個(gè)題目:
如圖1,在△ABC中,點(diǎn)O在線段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的長.
經(jīng)過社團(tuán)成員討論發(fā)現(xiàn),過點(diǎn)B作BD∥AC,交AO的延長線于點(diǎn)D,通過構(gòu)造△ABD就可以解決問題(如圖2).
請(qǐng)回答:∠ADB= °,AB= .
(2)請(qǐng)參考以上解決思路,解決問題:
如圖3,在四邊形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年沈陽國際馬拉松賽事設(shè)有“馬拉松”(A),“半程馬拉松”(B),“10公里跑”(C),“迷你馬拉松”(D)四個(gè)項(xiàng)目,小明和小亮參加了該賽事的志愿者服務(wù)工作,組委會(huì)將志愿者隨機(jī)分配到四個(gè)項(xiàng)目組,被分配到每個(gè)項(xiàng)目組的機(jī)會(huì)是相同的.
(1)小明被分配到“馬拉松”(A)項(xiàng)目組的概率為 ;
(2)利用畫樹狀圖或列表法求小明和小亮被分配到同一個(gè)項(xiàng)目組進(jìn)行志愿服務(wù)的概率.(項(xiàng)目名稱可用字母表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角三角形ABC中,∠ACB=90°,點(diǎn)H是△ABC的內(nèi)心,AH的延長線和三角形ABC的外接圓O相交于點(diǎn)D,連結(jié)DB.
(1)求證:DH=DB;
(2)過點(diǎn)D作BC的平行線交AC、AB的延長線分別于點(diǎn)E、F,已知CE=1,圓O的直徑為5.
①求證:EF為圓O的切線;
②求DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC是等腰直角三角形,∠A=90°,D是腰AC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)C作CE⊥BD,交BD的延長線于點(diǎn)E,如圖①.
(1)求證:ADCD=BDDE;
(2)若BD是邊AC的中線,如圖②,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com