【題目】推理填空:
如圖,直線AB,CD被直線EF所截,AD是∠CAB的角平分線,若∠3=∠1,∠2=50°,求∠4的度數(shù).
解:∵直線AB與直線EF相交,
∴∠2=∠CAB=50°.( )
∵AD是∠CAB的角平分線,
∴∠1=∠5=∠CAB=25°,( )
∵∠3=∠1,(已知)
∴∠3=25°,(等量代換)
∴∠3=∠5,(等量代換)
∴_______.( )
∵CD∥AB,( )
∴_______.(兩直線平行,同位角相等)
【答案】對頂角相等;角平分線定義;CD∥AB;內(nèi)錯角相等,兩直線平行;已證;∠4=∠2=50°
【解析】
根據(jù)平行線的判定及性質(zhì)求角的過程,一步步把求解的過程補(bǔ)充完整即可.
直線AB與直線EF相交,
∴∠2=∠CAB=50°(對頂角相等),
∵AD是∠CAB的角平分線,
∴∠1=∠DAB=∠CAB=25°(角平分線的定義),
∵∠3=∠1,(已知)
∴∠3=25°,(等量代換)
∴∠3=∠5,(等量代換)
∴CD∥AB.( 內(nèi)錯角相等,兩直線平行)
∵CD∥AB,( 已證)
∴∠4=∠2=50°.(兩直線平行,同位角相等)
故答案為:對頂角相等;角平分線定義;CD∥AB,內(nèi)錯角相等,兩直線平行;已證;∠4=∠2=50°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,過B作一直線與CD相交于點E,過A作AF垂直BE于點F,過C作CG垂直BE于點G,在FA上截取FH=FB,再過H作HP垂直AF交AB于P.若CG=3.則△CGE與四邊形BFHP的面積之和為 _________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某高校共有5個大餐廳和2個小餐廳。經(jīng)過測試:同時開放1個大餐廳和2個小餐廳,可供1680名學(xué)生就餐;同時開放2個大餐廳和1個小餐廳,可供2280名學(xué)生就餐。
(1)1個大餐廳和1個小餐廳分別可供多少名學(xué)生就餐?
(2)若7個餐廳同時開放,能否供全校的5300名學(xué)生就餐?請說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果拋物線y=ax2+bx+c過定點M(1,0),則稱此拋物線為定點拋物線.
(1)張老師在投影屏幕上出示了一個題目:請你寫出一條定點拋物線的解析式.小敏寫出了一個正確的答案:y=2x2+3x-5.請你寫出一個不同于小敏的答案;
(2)張老師又在投影屏幕上出示了一個思考題:已知定點拋物線y=-x2+2bx+c,求該拋物線的頂點最低時的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AC為對角線,點E、F分別是邊BC、AD的中點.
(1)求證:△ABE≌△CDF;
(2)若∠B=60°,AB=4,求線段AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=2,∠B=∠C=40°,點D在線段BC上運(yùn)動(D不與B、C重合),連接AD,作∠ADE=40°,DE交線段AC于E.
(1)當(dāng)∠BDA=115°時,∠EDC=______°,∠DEC=______°;點D從B向C運(yùn)動時,∠BDA逐漸變______(填“大”或“小”);
(2)當(dāng)DC等于多少時,△ABD≌△DCE,請說明理由;
(3)在點D的運(yùn)動過程中,△ADE的形狀可以是等腰三角形嗎?若可以,請直接寫出∠BDA的度數(shù).若不可以,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BOC=60°,點A是BO延長線上的一點,OA=10cm,動點P從點A出發(fā)沿AB以2cm/s的速度移動,動點Q從點O出發(fā)沿OC以1cm/s的速度移動,如果點P、Q同時出發(fā),用t(s)表示移動的時間,當(dāng)t=_____s時,△POQ是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,H是△ABC的高AD,BE的交點,且DH=DC,則下列結(jié)論:①BD=AD;②BC=AC;③BH=AC;④CE=CD中正確的有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠BAD的平分線交BC于點E,∠ABC的平分線交AD于點F.若BF=12,AB=10,則AE的長為( 。
A. 10 B. 12 C. 16 D. 18
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com