【題目】如圖,在ABCD中,AB⊥AC,對(duì)角線AC,BD相交于點(diǎn)O,將直線AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)一個(gè)角度α(0°<α≤90°),分別交線段BC,AD于點(diǎn)E,F,連接BF.
(1)如圖1,在旋轉(zhuǎn)的過程中,求證:OE=OF;
(2)如圖2,當(dāng)旋轉(zhuǎn)至90°時(shí),判斷四邊形ABEF的形狀,并證明你的結(jié)論;
(3)若AB=1,BC=,且BF=DF,求旋轉(zhuǎn)角度α的大。
【答案】(1)證明見解析;(2)平行四邊形,理由見解析;(3)45°
【解析】
(1)由平行四邊形的性質(zhì)得出∠OAF=∠OCE,OA=OC,進(jìn)而判斷出△AOF≌△COE,即可得出結(jié)論;
(2)先判斷出∠BAC=∠AOF,得出AB∥EF,即可得出結(jié)論;
(3)先求出AC=2,進(jìn)而得出A=1=AB,即可判斷出△ABO是等腰直角三角形,進(jìn)一步判斷出△BFD是等腰三角形,利用等腰三角形的三線合一得出∠BOF=90°,即可得出結(jié)論.
(1)證明:在ABCD中,AD∥BC,
∴∠OAF=∠OCE,
∵OA=OC,∠AOF=∠COE,
∴△AOF≌△COE(ASA),
∴OE=OF;
(2)當(dāng)旋轉(zhuǎn)角為90°時(shí),四邊形ABEF是平行四邊形,理由:
∵AB⊥AC,
∴∠BAC=90°,
∵∠AOF=90°,
∴∠BAC=∠AOF,
∴AB∥EF,
∵AF∥BE,
∴四邊形ABEF是平行四邊形;
(3)在Rt△ABC中,AB=1,BC=,
∴AC==2,
∴OA=1=AB,
∴△ABO是等腰直角三角形,
∴∠AOB=45°,
∵BF=DF,
∴△BFD是等腰三角形,
∵四邊形ABCD是平行四邊形,
∴OB=OD,
∴OF⊥BD(等腰三角形底邊上的中線是底邊上的高),
∴∠BOF=90°,
∴∠α=∠AOF=∠BOF﹣∠AOB=45°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】早晨,小剛沿著通往學(xué)校唯一的一條路(直路)上學(xué),途中發(fā)現(xiàn)忘帶飯盒,停下來往家里打電話,媽媽接到電話后帶上飯盒馬上趕往學(xué)校,同時(shí)小剛返回,兩人相遇后,小剛立即趕往學(xué)校,媽媽回家,15分鐘后媽媽到家,再經(jīng)過3分鐘小剛到達(dá)學(xué)校,小剛始終以100米/分的速度步行,小剛和媽媽的距離y(單位:米)與小剛打完電話后的步行時(shí)間t(單位:分)之間的函數(shù)關(guān)系如圖,下列四種說法中錯(cuò)誤的是( )
A. 打電話時(shí),小剛和媽媽的距離為1250米
B. 打完電話后,經(jīng)過23分鐘小剛到達(dá)學(xué)校
C. 小剛和媽媽相遇后,媽媽回家的速度為150米/分
D. 小剛家與學(xué)校的距離為2550米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=﹣x2+bx的圖象與x軸的正半軸交于點(diǎn)A(4,0),過A點(diǎn)的直線與y軸的正半軸交于點(diǎn)B,與二次函數(shù)的圖象交于另一點(diǎn)C,過點(diǎn)C作CH⊥x軸,垂足為H.設(shè)二次函數(shù)圖象的頂點(diǎn)為D,其對(duì)稱軸與直線AB及x軸分別交于點(diǎn)E和點(diǎn)F.
(1)求這個(gè)二次函數(shù)的解析式;
(2)如果CE=3BC,求點(diǎn)B的坐標(biāo);
(3)如果△DHE是以DH為底邊的等腰三角形,求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:b是最小的正整數(shù),且a、b滿足+=0,請(qǐng)回答問題:
(1)請(qǐng)直接寫出a、b、c的值;
(2)數(shù)軸上a、b、c所對(duì)應(yīng)的點(diǎn)分別為A、B、C,點(diǎn)M是A、B之間的一個(gè)動(dòng)點(diǎn),其對(duì)應(yīng)的數(shù)為m,請(qǐng)化簡(jiǎn)(請(qǐng)寫出化簡(jiǎn)過程);
(3)在(1)(2)的條件下,點(diǎn)A、B、C開始在數(shù)軸上運(yùn)動(dòng).若點(diǎn)A以每秒1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng).同時(shí),點(diǎn)B和點(diǎn)C分別以每秒2個(gè)單位長(zhǎng)度和5個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng).假設(shè)t秒鐘過后,若點(diǎn)B與點(diǎn)C之間的距離表示為BC,點(diǎn)A與點(diǎn)B之間的距離表示為AB.請(qǐng)問:BC-AB的值是否隨著時(shí)間t的變化而改變?若變化,請(qǐng)說明理由;若不變,請(qǐng)求其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解并解答:
(1)我們把多項(xiàng)式及叫做完全平方式,在運(yùn)用完全平方公式進(jìn)行因式分解時(shí),關(guān)鍵是判斷這個(gè)多項(xiàng)式是不是一個(gè)完全平方式.同樣地,把一個(gè)多項(xiàng)式進(jìn)行部分因式分解可以來解決求代數(shù)式值的最大(或最小)值問題.
例如:①
∵是非負(fù)數(shù),即≥0
∴+2≥2
則這個(gè)代數(shù)式的最小值是_______,這時(shí)相應(yīng)的的值是_______.
②
=
=
=
=
∵是非負(fù)數(shù),即≥0
∴-7≥-7
則這個(gè)代數(shù)式的最小值是____,這時(shí)相應(yīng)的的值是______.
(2)仿照上述方法求代數(shù)式 的最大(或最小)值,并寫出相應(yīng)的的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A是反比例函數(shù)的圖象上的一個(gè)動(dòng)點(diǎn),連接OA,若將線段OA繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到線段OB,則點(diǎn)B所在圖象的函數(shù)表達(dá)式為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,由邊長(zhǎng)均為1個(gè)單位的小正方形組成的網(wǎng)格圖中,點(diǎn)都在格點(diǎn)上。
(1)的面積為__________________________;
(2)以為邊畫出一個(gè)與全等的三角形,并進(jìn)一步探究:滿足條件的三角形可以作出_____;
(3)在直線上確定點(diǎn),使的長(zhǎng)度最短.(畫出示意圖,并標(biāo)明點(diǎn)的位置即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了保護(hù)環(huán)境,某開發(fā)區(qū)綜合治理指揮部決定購(gòu)買A,B兩種型號(hào)的污水處理設(shè)備共10臺(tái).已知用90萬元購(gòu)買A型號(hào)的污水處理設(shè)備的臺(tái)數(shù)與用75萬元購(gòu)買B型號(hào)的污水處理設(shè)備的臺(tái)數(shù)相同,每臺(tái)設(shè)備價(jià)格及月處理污水量如下表所示:
污水處理設(shè)備 | A型 | B型 |
價(jià)格(萬元/臺(tái)) | m | m-3 |
月處理污水量(噸/臺(tái)) | 220 | 180 |
(1)求m的值;
(2)由于受資金限制,指揮部用于購(gòu)買污水處理設(shè)備的資金不超過165萬元,問有多少種購(gòu)買方案?并求出每月最多處理污水量的噸數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,過點(diǎn)C的直線MN∥AB,D為AB邊上一點(diǎn),過點(diǎn)D作DE⊥BC,交直線MN于E,垂足為F,連接CD、BE.
(1)求證:CE=AD;
(2)當(dāng)D在AB中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說明你的理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com